Suppr超能文献

MEFA-Net:一种用于息肉分割的掩码增强特征聚合网络。

MEFA-Net: A mask enhanced feature aggregation network for polyp segmentation.

作者信息

Ke Xiao, Chen Guanhong, Liu Hao, Guo Wenzhong

机构信息

Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing, College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China; Engineering Research Center of Big Data Intelligence, Ministry of Education, Fuzhou 350116, China.

Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing, College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China; Engineering Research Center of Big Data Intelligence, Ministry of Education, Fuzhou 350116, China.

出版信息

Comput Biol Med. 2025 Mar;186:109601. doi: 10.1016/j.compbiomed.2024.109601. Epub 2024 Dec 31.

Abstract

Accurate polyp segmentation is crucial for early diagnosis and treatment of colorectal cancer. This is a challenging task for three main reasons: (i) the problem of model overfitting and weak generalization due to the multi-center distribution of data; (ii) the problem of interclass ambiguity caused by motion blur and overexposure to endoscopic light; and (iii) the problem of intraclass inconsistency caused by the variety of morphologies and sizes of the same type of polyps. To address these challenges, we propose a new high-precision polyp segmentation framework, MEFA-Net, which consists of three modules, including the plug-and-play Mask Enhancement Module (MEG), Separable Path Attention Enhancement Module (SPAE), and Dynamic Global Attention Pool Module (DGAP). Specifically, firstly, the MEG module regionally masks the high-energy regions of the environment and polyps through a mask, which guides the model to rely on only a small amount of information to distinguish between polyps and background features, avoiding the model from overfitting the environmental information, and improving the robustness of the model. At the same time, this module can effectively counteract the "dark corner phenomenon" in the dataset and further improve the generalization performance of the model. Next, the SPAE module can effectively alleviate the inter-class fuzzy problem by strengthening the feature expression. Then, the DGAP module solves the intra-class inconsistency problem by extracting the invariance of scale, shape and position. Finally, we propose a new evaluation metric, MultiColoScore, for comprehensively evaluating the segmentation performance of the model on five datasets with different domains. We evaluated the new method quantitatively and qualitatively on five datasets using four metrics. Experimental results show that MEFA-Net significantly improves the accuracy of polyp segmentation and outperforms current state-of-the-art algorithms. Code posted on https://github.com/847001315/MEFA-Net.

摘要

准确的息肉分割对于结直肠癌的早期诊断和治疗至关重要。这是一项具有挑战性的任务,主要有三个原因:(i)由于数据的多中心分布导致模型过拟合和泛化能力弱的问题;(ii)由运动模糊和内镜光过度曝光引起的类间模糊问题;(iii)由同一类型息肉的形态和大小各异导致的类内不一致问题。为应对这些挑战,我们提出了一种新的高精度息肉分割框架MEFA-Net,它由三个模块组成,包括即插即用的掩码增强模块(MEG)、可分离路径注意力增强模块(SPAE)和动态全局注意力池模块(DGAP)。具体而言,首先,MEG模块通过掩码对环境和息肉的高能区域进行局部掩码,引导模型仅依靠少量信息来区分息肉和背景特征,避免模型过度拟合环境信息,提高模型的鲁棒性。同时,该模块可以有效抵消数据集中的“暗角现象”,进一步提高模型的泛化性能。接下来,SPAE模块通过强化特征表达有效缓解类间模糊问题。然后,DGAP模块通过提取尺度、形状和位置的不变性来解决类内不一致问题。最后,我们提出了一种新的评估指标MultiColoScore,用于综合评估模型在五个不同领域数据集上的分割性能。我们使用四个指标在五个数据集上对新方法进行了定量和定性评估。实验结果表明,MEFA-Net显著提高了息肉分割的准确性,优于当前的最先进算法。代码发布在https://github.com/847001315/MEFA-Net

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验