Suppr超能文献

C2P-GCN:用于结直肠癌分级的细胞到斑块图卷积网络

C2P-GCN: Cell-to-Patch Graph Convolutional Network for Colorectal Cancer Grading.

作者信息

Paul Sudipta, Yener Bulent, Lund Amanda W

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10782435.

Abstract

Graph-based learning approaches, due to their ability to encode tissue/organ structure information, are increasingly favored for grading colorectal cancer histology images. Recent graph-based techniques involve dividing whole slide images (WSIs) into smaller or medium-sized patches, and then building graphs on each patch for direct use in training. This method, however, fails to capture the tissue structure information present in an entire WSI and relies on training from a significantly large dataset of image patches. In this paper, we propose a novel cell-to-patch graph convolutional network (C2P-GCN), which is a two-stage graph formation-based approach. In the first stage, it forms a patch-level graph based on the cell organization on each patch of a WSI. In the second stage, it forms an image-level graph based on a similarity measure between patches of a WSI considering each patch as a node of a graph. This graph representation is then fed into a multi-layer GCN-based classification network. Our approach, through its dual-phase graph construction, effectively gathers local structural details from individual patches and establishes a meaningful connection among all patches across a WSI. As C2P-GCN integrates the structural data of an entire WSI into a single graph, it allows our model to work with significantly fewer training data compared to the latest models for colorectal cancer. Experimental validation of C2P-GCN on two distinct colorectal cancer datasets demonstrates the effectiveness of our method.

摘要

基于图的学习方法,由于其能够编码组织/器官结构信息,在结直肠癌组织学图像分级中越来越受到青睐。最近基于图的技术包括将全切片图像(WSIs)分割成较小或中等大小的图像块,然后在每个图像块上构建图以直接用于训练。然而,这种方法无法捕捉整个WSI中存在的组织结构信息,并且依赖于从大量的图像块数据集中进行训练。在本文中,我们提出了一种新颖的细胞到图像块图卷积网络(C2P-GCN),这是一种基于两阶段图形成的方法。在第一阶段,它基于WSI每个图像块上的细胞组织形成一个图像块级别的图。在第二阶段,它基于WSI图像块之间的相似性度量形成一个图像级别图,将每个图像块视为图的一个节点。然后将这种图表示输入到基于多层GCN的分类网络中。我们的方法通过其双阶段图构建,有效地从各个图像块中收集局部结构细节,并在整个WSI的所有图像块之间建立有意义的连接。由于C2P-GCN将整个WSI的结构数据集成到单个图中,与最新的结直肠癌模型相比,它允许我们的模型使用显著更少的训练数据。C2P-GCN在两个不同的结直肠癌数据集上的实验验证证明了我们方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验