Khajehzadeh Mahasty, Kumara Shreya Tirumala, Geramifard Negar, Thai Teresa, Hernandez-Reynoso Ana G, Pancrazio Joseph J, Cogan Stuart F
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10782899.
Penetrating, Ultra-small Microelectrode Arrays (UMEAs) have been shown to evoke less foreign body response on implantation in neural tissue. This may be attributed to reduced tissue displacement on implantation and reduced mechanical mismatch between the highly flexible UMEA and tissue. However, the high flexibility of UMEAs makes implantation challenging. Establishing a robust model of tissue insertion may provide information on the forces encountered during implantation, assess the likelihood of UMEA penetration without buckling. In this study we measured insertion forces of amorphous SiC probes in rat cortex, and in 0.8 wt% and 1.2 wt% agarose models of brain tissue. The primary findings indicate that the 1.2% agarose model accurately predicts the maximum force of insertion obtained from measurements in rat. This suggests the suitability of the 1.2 wt% agarose model for the mechanical characterization of UMEAs prior to in vivo experimentation.
已证明,具有穿透性的超小微电极阵列(UMEAs)在植入神经组织时引发的异物反应较小。这可能归因于植入时组织移位的减少以及高度灵活的UMEAs与组织之间机械不匹配的降低。然而,UMEAs的高灵活性使得植入具有挑战性。建立一个强大的组织插入模型可以提供有关植入过程中所遇到力的信息,评估UMEAs无弯曲穿透的可能性。在本研究中,我们测量了非晶碳化硅探针在大鼠皮层以及0.8 wt%和1.2 wt%脑组织琼脂糖模型中的插入力。主要研究结果表明,1.2%琼脂糖模型能够准确预测在大鼠体内测量获得的最大插入力。这表明1.2 wt%琼脂糖模型适用于在体内实验之前对UMEAs进行力学特性表征。