Lim Elissa Yanting, Yin Kang, Shin Hye-Bin, Lee Seong-Whan
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10781970.
Brain-computer interfaces (BCIs) suffer from limited accuracy due to noisy electroencephalography (EEG) signals. Existing denoising methods often remove artifacts such as eye movement or use techniques such as linear detrending, which inadvertently discard crucial task-relevant information. To address this issue, we present BGNet, a novel deep learning framework that leverages underutilized baseline EEG signals for dynamic noise mitigation and robust feature extraction to improve motor imagery (MI) EEG classification. Our approach employs data augmentation to strengthen model robustness, an autoencoder to extract features from baseline and MI signals, a feature alignment module to separate specific task and noise, and a classifier. We achieve state-of-the-art performance, an improvement of 5.9% and 3.7% on the BCIC IV 2a and 2b datasets, respectively. The qualitative analysis of our learned features proves superior representational power over baseline models, a critical aspect in dealing with noisy EEG signals. Our findings demonstrate the efficacy of readily available baseline signals in enhancing performance, opening possibilities for simplified BCI systems in brain-based communication applications.
由于脑电图(EEG)信号存在噪声,脑机接口(BCI)的准确性受到限制。现有的去噪方法通常会去除诸如眼球运动等伪迹,或者使用诸如线性去趋势等技术,这会无意中丢弃与任务相关的关键信息。为了解决这个问题,我们提出了BGNet,这是一种新颖的深度学习框架,它利用未充分利用的基线EEG信号进行动态噪声缓解和鲁棒特征提取,以改善运动想象(MI)EEG分类。我们的方法采用数据增强来增强模型的鲁棒性,使用自动编码器从基线和MI信号中提取特征,使用特征对齐模块分离特定任务和噪声,并使用分类器。我们取得了领先的性能,在BCIC IV 2a和2b数据集上分别提高了5.9%和3.7%。对我们学习到的特征进行定性分析,结果证明其具有优于基线模型的表征能力,这是处理有噪声EEG信号的一个关键方面。我们的研究结果证明了现成的基线信号在提高性能方面的有效性,为基于大脑的通信应用中简化BCI系统开辟了可能性。