Suppr超能文献

通过可调谐的保守和非保守耦合强度,相互作用的涡旋系统中存在多种动力学。

Diverse dynamics in interacting vortices systems through tunable conservative and non-conservative coupling strengths.

作者信息

Hamadeh Alexandre Abbass, Koujok Abbas, Rodrigues Davi R, Riveros Alejandro, Lomakin Vitaliy, Finocchio Giovanni, De Loubens Grégoire, Klein Olivier, Pirro Philipp

机构信息

Fachbereich Physik and Landesforschungszentrum OPTIMAS, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, 67663 Kaiserslautern, Germany.

Université Paris-Saclay, Centre de Nanosciences et de Nanotechnologies, CNRS, 91120 Palaiseau, France.

出版信息

Commun Phys. 2025;8(1):85. doi: 10.1038/s42005-025-02006-3. Epub 2025 Mar 1.

Abstract

Magnetic vortices are highly tunable, nonlinear systems with ideal properties for being applied in spin wave emission, data storage, and neuromorphic computing. However, their technological application is impaired by a limited understanding of non-conservative forces, that results in the open challenge of attaining precise control over vortex dynamics in coupled vortex systems. Here, we present an analytical model for the gyrotropic dynamics of coupled magnetic vortices within nano-pillar structures, revealing how conservative and non-conservative forces dictate their complex behavior. Validated by micromagnetic simulations, our model accurately predicts dynamic states, controllable through external current and magnetic field adjustments. The experimental verification in a fabricated nano-pillar device aligns with our predictions, and it showcases the system's adaptability in dynamical coupling. The unique dynamical states, combined with the system's tunability and inherent memory, make it an exemplary foundation for reservoir computing. This positions our discovery at the forefront of utilizing magnetic vortex dynamics for innovative computing solutions, marking a leap towards efficient data processing technologies.

摘要

磁涡旋是高度可调谐的非线性系统,具有适用于自旋波发射、数据存储和神经形态计算的理想特性。然而,由于对非保守力的理解有限,它们的技术应用受到了阻碍,这导致在耦合涡旋系统中精确控制涡旋动力学成为一个公开的挑战。在这里,我们提出了一个关于纳米柱结构内耦合磁涡旋的旋磁动力学的分析模型,揭示了保守力和非保守力如何决定它们的复杂行为。通过微磁模拟验证,我们的模型准确地预测了动态状态,可通过外部电流和磁场调整来控制。在制造的纳米柱器件中的实验验证与我们的预测一致,并且展示了该系统在动态耦合方面的适应性。独特的动态状态,结合系统的可调谐性和固有记忆,使其成为储层计算的典范基础。这使我们的发现处于利用磁涡旋动力学实现创新计算解决方案的前沿,标志着向高效数据处理技术迈出了一大步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b67c/11872732/e17e24a97153/42005_2025_2006_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验