Suppr超能文献

具有不同尺寸和组成冠状物的金纳米颗粒的结构与zeta电位

Structure and Zeta Potential of Gold Nanoparticles with Coronas of Varying Size and Composition.

作者信息

Wei Xingfei, Alam Arham R, Mo Qiankun, Hernandez Rigoberto

机构信息

Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.

出版信息

J Phys Chem C Nanomater Interfaces. 2025 Feb 18;129(8):4204-4214. doi: 10.1021/acs.jpcc.4c07595. eCollection 2025 Feb 27.

Abstract

The structure of the soft ligand shell in engineered nanoparticles is related to their physical and chemical properties. The variation in that structre is critical for extending the diversity of functions in a wide variety of applications. To uncover the structure of soft PAH coronas wrapped on gold nanoparticles (AuNPs), in particular, we used atomistic simulations in this work. We found that increasing the number of PAH chains can increase both the size of the soft PAH corona and the magnitude of the electric potential of the PAH-wrapped cit-AuNPs (PAH-AuNPs). We also found that when the salt concentration increases, both the soft corona size and the electric potential decrease due to Debye screening. We compared the ligand structures, ion distributions, and electric potentials of 5 different nanoparticles-viz. citrate, PAH, 3-mercapto-propionic acid (MPA), 16-mercapto-hexadecyl-trimethylammonium bromide (MTAB), and hexadecyl-trimethylammonium bromide (CTAB) capped AuNPs. We found that when the surface charge densities are similar, these 5 different nanoparticles have similar electric potential profiles, but their ligand structures differ. Using Debye-Hckel theory, we determine the slipping planes (at the hydrodynamic radius, ) and calculate the ζ-potentials of different AuNPs. We compared several machine learning (ML) models to predict the ζ-potential values learned from our simulation data and found that the Extra Trees model is the best at rationalizing the experimental data.

摘要

工程纳米颗粒中软配体壳层的结构与其物理和化学性质相关。该结构的变化对于扩展各种应用中的功能多样性至关重要。特别是,为了揭示包裹在金纳米颗粒(AuNPs)上的软聚电解质刷(PAH)冠层的结构,我们在这项工作中使用了原子模拟。我们发现增加PAH链的数量可以增加软PAH冠层的大小以及PAH包裹的柠檬酸金纳米颗粒(PAH-AuNPs)的电势大小。我们还发现,当盐浓度增加时,由于德拜屏蔽,软冠层大小和电势都会降低。我们比较了5种不同纳米颗粒(即柠檬酸盐、PAH、3-巯基丙酸(MPA)、16-巯基十六烷基三甲基溴化铵(MTAB)和十六烷基三甲基溴化铵(CTAB)包覆的AuNPs)的配体结构、离子分布和电势。我们发现,当表面电荷密度相似时,这5种不同的纳米颗粒具有相似的电势分布,但它们的配体结构不同。使用德拜-休克尔理论,我们确定了滑移面(在流体动力学半径处)并计算了不同AuNPs的ζ电位。我们比较了几种机器学习(ML)模型,以预测从我们的模拟数据中学到的ζ电位值,发现Extra Trees模型在合理化实验数据方面表现最佳。

相似文献

1
Structure and Zeta Potential of Gold Nanoparticles with Coronas of Varying Size and Composition.具有不同尺寸和组成冠状物的金纳米颗粒的结构与zeta电位
J Phys Chem C Nanomater Interfaces. 2025 Feb 18;129(8):4204-4214. doi: 10.1021/acs.jpcc.4c07595. eCollection 2025 Feb 27.
5
Thermal Transport through CTAB- and MTAB-Functionalized Gold Interfaces Using Molecular Dynamics Simulations.
J Chem Inf Model. 2025 Jan 27;65(2):811-824. doi: 10.1021/acs.jcim.4c02195. Epub 2025 Jan 13.
8
The Landscape of Gold Nanocrystal Surface Chemistry.金纳米晶表面化学的研究现状。
Acc Chem Res. 2023 Jun 20;56(12):1553-1564. doi: 10.1021/acs.accounts.3c00109. Epub 2023 Jun 1.

本文引用的文献

1
Towards realizing nano-enabled precision delivery in plants.实现植物纳米精准投递。
Nat Nanotechnol. 2024 Sep;19(9):1255-1269. doi: 10.1038/s41565-024-01667-5. Epub 2024 Jun 6.
3
Modeling Zeta Potential for Nanoparticles in Solution: Water Flexibility Matters.溶液中纳米颗粒的zeta电位建模:水的柔韧性很重要。
J Phys Chem C Nanomater Interfaces. 2023 May 9;127(19):9236-9247. doi: 10.1021/acs.jpcc.2c08988. eCollection 2023 May 18.
4
Surfactant Layers on Gold Nanorods.金纳米棒上的表面活性剂层。
Acc Chem Res. 2023 May 16;56(10):1204-1212. doi: 10.1021/acs.accounts.3c00101. Epub 2023 May 8.
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验