Suppr超能文献

基于原子的机器学习用于估计亲核性和亲电性及其在逆合成和化学稳定性方面的应用

Atom-based machine learning for estimating nucleophilicity and electrophilicity with applications to retrosynthesis and chemical stability.

作者信息

Ree Nicolai, Wollschläger Jan M, Göller Andreas H, Jensen Jan H

机构信息

Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark

Bayer AG, Pharmaceuticals, R&D, Machine Learning Research 13353 Berlin Germany.

出版信息

Chem Sci. 2025 Feb 25;16(13):5676-5687. doi: 10.1039/d4sc07297a. eCollection 2025 Mar 26.

Abstract

Nucleophilicity and electrophilicity are important properties for evaluating the reactivity and selectivity of chemical reactions. It allows the ranking of nucleophiles and electrophiles on reactivity scales, enabling a better understanding and prediction of reaction outcomes. Building upon our recent work (N. Ree, A. H. Göller and J. H. Jensen, Automated quantum chemistry for estimating nucleophilicity and electrophilicity with applications to retrosynthesis and covalent inhibitors, , 2024, , 347-354), we introduce an atom-based machine learning (ML) approach for predicting methyl cation affinities (MCAs) and methyl anion affinities (MAAs) to estimate nucleophilicity and electrophilicity, respectively. The ML models are trained and validated on QM-derived data from around 50 000 neutral drug-like molecules, achieving Pearson correlation coefficients of 0.97 for MCA and 0.95 for MAA on the held-out test sets. In addition, we demonstrate the ML approach on two different applications: first, as a general tool for filtering retrosynthetic routes based on chemical selectivity predictions, and second, as a tool for assessing the chemical stability of esters and carbamates towards hydrolysis reactions. The code is freely available on GitHub under the MIT open source license and as a web application at https://www.esnuel.org.

摘要

亲核性和亲电性是评估化学反应的反应性和选择性的重要性质。它允许在反应活性尺度上对亲核试剂和亲电试剂进行排序,从而更好地理解和预测反应结果。基于我们最近的工作(N. Ree、A. H. Göller和J. H. Jensen,用于估计亲核性和亲电性的自动量子化学及其在逆合成和共价抑制剂中的应用,,2024,,347 - 354),我们引入了一种基于原子的机器学习(ML)方法来预测甲基阳离子亲和力(MCA)和甲基阴离子亲和力(MAA),分别用于估计亲核性和亲电性。这些ML模型在来自约50000个类药物中性分子的量子力学(QM)衍生数据上进行训练和验证,在留出的测试集上,MCA的皮尔逊相关系数为0.97,MAA的皮尔逊相关系数为0.95。此外,我们在两个不同的应用中展示了这种ML方法:第一,作为基于化学选择性预测筛选逆合成路线的通用工具;第二,作为评估酯和氨基甲酸酯对水解反应的化学稳定性的工具。该代码在GitHub上根据麻省理工学院开源许可免费提供,也可作为网络应用程序在https://www.esnuel.org上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c691/11938882/548c3601ec58/d4sc07297a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验