Maufort Arthur, Van Landeghem Melissa, Deutsch Maxime, Banks Peter, La Magna Paola, Van Hecke Kristof, Cerdá Jesús, Lutsen Laurence, Vanderzande Dirk, Quarti Claudio, Beljonne David, Pillet Sébastien, Vandewal Koen, Van Gompel Wouter T M
Hybrid Materials Design, Institute for Materials Research (imo-imomec), Hasselt University Martelarenlaan 42 B-3500 Hasselt Belgium
Organic Opto-Electronics, Institute for Materials Research (imo-imomec), Hasselt University Martelarenlaan 42 B-3500 Hasselt Belgium.
Chem Sci. 2025 Feb 24;16(13):5662-5675. doi: 10.1039/d4sc06637e. eCollection 2025 Mar 26.
Layered hybrid perovskites are intensively researched today as highly tunable materials for efficient light harvesting and emitting devices. In classical layered hybrid perovskites, the structural rigidity mainly stems from the crystalline inorganic sublattice, whereas the organic sublattice has a minor contribution to the rigidity of the material. Here, we report two layered hybrid perovskites, (BTa)PbI and (FBTa)PbI, which possess substantially more rigid organic layers due to hydrogen bonding, π-π stacking, and dipole-dipole interactions. These layered perovskites are phase stable under elevated pressures up to 5 GPa and upon temperature lowering down to 80 K. The organic layers, composed of benzotriazole-derived ammonium cations, are among the most rigid in the field of layered hybrid perovskites. We characterize structural rigidity using single-crystal X-ray diffraction during compression up to 5 GPa. Interestingly, the enhanced rigidity of the organic sublattice does not seem to transfer to the inorganic sublattice, leading to an uncommon material configuration with rigid organic layers and deformable inorganic layers. The deformability of the inorganic sublattice is apparent from differences in optical properties between the crystal bulk and surface. Supported by first-principles calculations, we assign these differences to energy transfer processes from the surface to the bulk. The deformability also leads to reversible piezochromism due to shifting of the photoluminescence emission peak with increasing pressure up to 5 GPa, and thermochromism due to narrowing of the photoluminescence emission linewidth with decreasing temperature down to 80 K. This raises the possibility of applying these phase-stable layered hybrid perovskite materials in temperature and/or pressure sensors.
层状杂化钙钛矿如今作为用于高效光捕获和发光器件的高度可调节材料而受到深入研究。在经典的层状杂化钙钛矿中,结构刚性主要源于结晶无机亚晶格,而有机亚晶格对材料的刚性贡献较小。在此,我们报道了两种层状杂化钙钛矿,(BTa)PbI和(FBTa)PbI,由于氢键、π-π堆积和偶极-偶极相互作用,它们具有实质上更刚性的有机层。这些层状钙钛矿在高达5 GPa的高压下以及温度降至80 K时均保持相稳定。由苯并三唑衍生的铵阳离子组成的有机层是层状杂化钙钛矿领域中最刚性的有机层之一。我们在高达5 GPa的压缩过程中使用单晶X射线衍射来表征结构刚性。有趣的是,有机亚晶格增强的刚性似乎并未传递到无机亚晶格,从而导致一种不寻常的材料构型,即有机层刚性而无机层可变形。无机亚晶格的可变形性从晶体整体和表面的光学性质差异中明显可见。在第一性原理计算的支持下,我们将这些差异归因于从表面到整体的能量转移过程。这种可变形性还导致了可逆的压致变色,即随着压力增加至5 GPa,光致发光发射峰发生移动;以及热致变色,即随着温度降低至80 K,光致发光发射线宽变窄。这增加了将这些相稳定的层状杂化钙钛矿材料应用于温度和/或压力传感器的可能性。