Chen Zheng, Xiao Yi, Qiao Xianji, Ou Honghui, Lee Chi-Feng, Wang Hsiao-Tsu, Shao Yu-Cheng, Han Lili
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2420922122. doi: 10.1073/pnas.2420922122. Epub 2025 Mar 5.
Although bismuth catalysts enable accelerated electrochemical CO-to-formate conversion, the intrinsic active sites and forming mechanisms under operating conditions remain elusive. Herein, we prepared BiONCN, BiO, and BiOS as precatalysts. Among them, BiONCN-derived catalyst possesses optimum performance of electrochemical CO-to-formate, exhibiting an upsurge of Faradaic efficiency to 98.3% at -0.6 V vs. reversible hydrogen electrodes. In-situ infrared and electrochemical impedance spectra trace and interpret the superior performance. Multimodal structural analyses utilizing quasi-in-situ X-ray diffraction, in-situ X-ray absorption near edge structure and in-situ Raman spectra provide powerful support to monitoring the catalysts' in-situ transforms to metallic Bi, identifying the formation of the active sites influenced by the chalcogenide ions-guided: Carbodiimide promotes to form of the dominant Bi(003) facet exposure, which distinguishes from sulfide- and oxide-preferred dominant Bi(012) facets exposure. Concurrently, theoretical insights garnered from multiscale/multilevel computational analyses harmoniously corroborate the experimental findings. These findings show the pivotal role of chalcogenide in tailoring bismuth electrocatalysts for selective CO reduction to formate, illuminating the significance of controlling structural chemistry in designing catalysts toward high-efficiency renewable energy conversion.
尽管铋催化剂能够加速电化学CO转化为甲酸盐的过程,但在工作条件下其本征活性位点和形成机制仍不明确。在此,我们制备了BiONCN、BiO和BiOS作为预催化剂。其中,BiONCN衍生的催化剂具有电化学CO转化为甲酸盐的最佳性能,在相对于可逆氢电极-0.6 V时,法拉第效率飙升至98.3%。原位红外和电化学阻抗谱追踪并解释了其优异性能。利用准原位X射线衍射、原位X射线吸收近边结构和原位拉曼光谱进行的多模态结构分析为监测催化剂原位转变为金属铋、识别受硫族化物离子引导影响的活性位点形成提供了有力支持:碳二亚胺促进形成占主导的Bi(003)晶面暴露,这与硫化物和氧化物优先的占主导的Bi(012)晶面暴露不同。同时,从多尺度/多层次计算分析中获得的理论见解与实验结果和谐地相互印证。这些发现表明硫族化物在定制铋电催化剂用于选择性CO还原为甲酸盐方面的关键作用,阐明了在设计高效可再生能源转换催化剂时控制结构化学的重要性。