Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK.
Max-Planck-Institut für Extraterrestrische Physik, Giessenbach-Strasse 1, D-85748 Garching, Munich, Germany.
Nature. 2017 Nov 2;551(7678):75-79. doi: 10.1038/nature24303. Epub 2017 Oct 16.
Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
引力波是通过探测双黑洞合并而发现的,它们也应该可以从质量较低的中子星合并中探测到。这些合并预计会抛出富含重放射性同位素的物质,这些物质可以为电磁信号提供能量。这种信号在光学和红外波长下是发光的,被称为千新星。引力波源 GW170817 来自附近宇宙中一对近距离的中子星合并,其天空位置和距离估计相对受限。在这里,我们报告了对 NGC 4993 星系中一个迅速消失的电磁暂态的观测和物理建模,该星系与 GW170817 以及一个较弱的短γ射线暴在空间上是重合的。这个暂态的物理参数与中子星合并的蓝千新星的理论预测大致相符。发射的电磁辐射可以用一个 0.04 ± 0.01 个太阳质量的喷射质量、小于 0.5 平方厘米每克的不透明度、0.2 ± 0.1 倍光速的速度来解释。功率源的功率-law 斜率被限制在-1.2 ± 0.3,与来自 r 过程核素的放射性供能一致。(r 过程是一系列的中子捕获反应,合成了许多比铁重的元素。)我们在光谱中识别出与轻 r 过程元素(原子质量为 90-140)一致的谱线特征。随着它的衰减,暂态迅速变红,一个具有较高不透明度、富含镧系元素的喷射物成分可能会对发射做出贡献。这表明,中子星合并产生了引力波和放射性供能的千新星,是 r 过程元素的核合成源。