Suppr超能文献

使用机器学习模型和生活方式评分确定生活方式风险因素在预测减肥手术后暴饮暴食症中的重要性。

Determining the Importance of Lifestyle Risk Factors in Predicting Binge Eating Disorder After Bariatric Surgery Using Machine Learning Models and Lifestyle Scores.

作者信息

Mousavi Maryam, Tabesh Mastaneh Rajabian, Moghadami Seyyedeh Mahila, Saidpour Atoosa, Jahromi Soodeh Razeghi

机构信息

Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Obes Surg. 2025 Apr;35(4):1396-1406. doi: 10.1007/s11695-025-07765-0. Epub 2025 Mar 5.

Abstract

BACKGROUND

This study was conducted to assess the association between lifestyle risk factors (LRF) and odds of binge eating disorder (BED) 2 years post laparoscopic sleeve gastrectomy (LSG) using lifestyle score (LS) and machine learning (ML) models.

METHODS

In the current study, 450 individuals who had undergone LSG 2 years prior to participation were enrolled. BED was assessed using BES questionnaire. The collected data for LRF included smoking, alcohol consumption, physical activity (PA), fruit and vegetable intake, overweight/obesity, and percentage excess weight loss (EWL%). ML models included: logistic regression (LG), KNN, decision tree (DT), random forest (RF), SVM, XGBoost, and deep learning or artificial neurol network (ANN). Additionally, accumulative LRF was assessed using LS.

RESULTS

One hundred and twenty-two subjects (26.1%) met the criteria for BED 2 years after LSG. Participants who were in the highest quartile of the lifestyle score (nearly worst) had significantly three times higher odds of BED compared to the lowest quartile (nearly optimal) (p trend = 0.01). Furthermore, RF, LG, SVM, and ANN had the highest accuracy (about 75%) in predicting BED compared to other ML models (between 60 and 72%). Among the lifestyle risk factors, insufficient PA, lower vegetable consumption, a higher level of BMI, and lower EWL% were independently associated with BED (p < 0.05).

CONCLUSIONS

Our findings indicate that poor lifestyle patterns are associated with the development of BED, in contrast to non-BED individuals. Given the prevalence of this disorder among LSG participants, lifestyle risk factors must receive special attention after BS.

摘要

背景

本研究旨在使用生活方式评分(LS)和机器学习(ML)模型,评估腹腔镜袖状胃切除术(LSG)后2年生活方式风险因素(LRF)与暴饮暴食症(BED)几率之间的关联。

方法

在本研究中,纳入了450名在参与研究前2年接受过LSG的个体。使用BES问卷评估BED。收集的LRF数据包括吸烟、饮酒、身体活动(PA)、水果和蔬菜摄入量、超重/肥胖以及多余体重减轻百分比(EWL%)。ML模型包括:逻辑回归(LG)、K近邻算法(KNN)、决策树(DT)、随机森林(RF)、支持向量机(SVM)、极端梯度提升(XGBoost)以及深度学习或人工神经网络(ANN)。此外,使用LS评估累积LRF。

结果

122名受试者(26.1%)在LSG后2年符合BED标准。生活方式评分处于最高四分位数(几乎最差)的参与者患BED的几率比最低四分位数(几乎最佳)的参与者显著高出两倍(p趋势 = 0.01)。此外,与其他ML模型(60%至72%)相比,RF、LG、SVM和ANN在预测BED方面具有最高的准确率(约75%)。在生活方式风险因素中,PA不足、蔬菜摄入量较低、BMI水平较高以及EWL%较低与BED独立相关(p < 0.05)。

结论

我们研究结果表明,与非BED个体相比,不良生活方式模式与BED的发生有关。鉴于这种疾病在LSG参与者中的患病率,生活方式风险因素在胃袖状切除术后必须得到特别关注。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验