文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

IDO1 inhibition enhances CLDN18.2-CAR-T cell therapy in gastrointestinal cancers by overcoming kynurenine-mediated metabolic suppression in the tumor microenvironment.

作者信息

Wu Zhaorong, Wang Hongye, Zheng Zhigang, Lin Yan, Bian Linke, Geng Haigang, Huang Xiaorong, Zhu Jiufei, Jing Hongshu, Zhang Yi, Ji Chen, Zhai Bo

机构信息

Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

出版信息

J Transl Med. 2025 Mar 5;23(1):275. doi: 10.1186/s12967-025-06276-x.


DOI:10.1186/s12967-025-06276-x
PMID:40045363
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11884131/
Abstract

BACKGROUND: Chimeric antigen receptor (CAR)-T cell therapy has achieved remarkable success in hematologic malignancies but faces significant limitations in gastrointestinal tumors due to the immunosuppressive tumor microenvironment (TME). Indoleamine 2,3-dioxygenase 1 (IDO1), a key enzyme in the TME, suppresses T cell efficacy by catalyzing tryptophan degradation to kynurenine (Kyn), leading to T cell exhaustion and reduced cytotoxicity. This study investigates the role of IDO1 inhibition in overcoming metabolic suppression by kynurenine and enhancing Claudin18.2 (CLDN18.2) CAR-T cell therapy in gastric and pancreatic adenocarcinoma models. METHODS: We evaluated the impact of genetic knockdown and pharmacological inhibition of IDO1 (using epacadostat) on CAR-T cell functionality, including cytokine production and exhaustion marker expression. The effects of fludarabine and cyclophosphamide preconditioning on IDO1 expression, CAR-T cell infiltration, and antitumor activity was also examined. In vivo tumor models of gastric and pancreatic adenocarcinomas were used to assess the efficacy of combining IDO1 inhibition with CLDN18.2-CAR-T therapy. RESULTS: IDO1 inhibition significantly enhanced CAR-T cell function by increasing cytokine production, reducing exhaustion markers by decreasing TOX expression and improving tumor cell lysis. Preconditioning with fludarabine and cyclophosphamide further suppressed IDO1 expression in the TME, facilitating enhanced CAR-T cell infiltration. In vivo studies demonstrated that combining IDO1 inhibition with CAR-T therapy led to robust tumor growth suppression and prolonged survival in gastric and pancreatic tumor models. CONCLUSIONS: Targeting IDO1 represents a promising strategy to overcome immunosuppressive barriers in gastrointestinal cancers, improving the efficacy of CLDN18.2-CAR-T therapy. These findings highlight the potential for integrating IDO1 inhibition into CAR-T treatment regimens to address resistance in treatment-refractory cancers.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07da/11884131/8be76242162c/12967_2025_6276_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07da/11884131/610a1001ad55/12967_2025_6276_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07da/11884131/31fe87964cd3/12967_2025_6276_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07da/11884131/a5f88751667f/12967_2025_6276_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07da/11884131/732048d64029/12967_2025_6276_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07da/11884131/ce3e68142627/12967_2025_6276_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07da/11884131/3007faafdd5c/12967_2025_6276_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07da/11884131/8be76242162c/12967_2025_6276_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07da/11884131/610a1001ad55/12967_2025_6276_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07da/11884131/31fe87964cd3/12967_2025_6276_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07da/11884131/a5f88751667f/12967_2025_6276_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07da/11884131/732048d64029/12967_2025_6276_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07da/11884131/ce3e68142627/12967_2025_6276_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07da/11884131/3007faafdd5c/12967_2025_6276_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07da/11884131/8be76242162c/12967_2025_6276_Fig7_HTML.jpg

相似文献

[1]
IDO1 inhibition enhances CLDN18.2-CAR-T cell therapy in gastrointestinal cancers by overcoming kynurenine-mediated metabolic suppression in the tumor microenvironment.

J Transl Med. 2025-3-5

[2]
Indoleamine 2,3-Dioxygenase 1 Inhibitor-Loaded Nanosheets Enhance CAR-T Cell Function in Esophageal Squamous Cell Carcinoma.

Front Immunol. 2021

[3]
Dual targeting chimeric antigen receptor cells enhance antitumour activity by overcoming T cell exhaustion in pancreatic cancer.

Br J Pharmacol. 2024-11

[4]
miR-153 suppresses IDO1 expression and enhances CAR T cell immunotherapy.

J Hematol Oncol. 2018-4-23

[5]
GD2 redirected CAR T and activated NK-cell-mediated secretion of IFNγ overcomes MYCN-dependent IDO1 inhibition, contributing to neuroblastoma cell immune escape.

J Immunother Cancer. 2021-3

[6]
Targeting Lin28 axis enhances glypican-3-CAR T cell efficacy against hepatic tumor initiating cell population.

Mol Ther. 2023-3-1

[7]
Preclinical Evaluation of AZD6422, an Armored Chimeric Antigen Receptor T Cell Targeting CLDN18.2 in Gastric, Pancreatic, and Esophageal Cancers.

Clin Cancer Res. 2024-12-2

[8]
ARID5A stabilizes Indoleamine 2,3-dioxygenase expression and enhances CAR T cell exhaustion in colorectal cancer.

Transl Oncol. 2024-4

[9]
Chemo-immunotherapy by nanoliposomal epacadostat and docetaxel combination to IDO1 inhibition and tumor microenvironment suppression.

Int Immunopharmacol. 2024-8-20

[10]
Superior antitumor immunotherapy efficacy of kynureninase modified CAR-T cells through targeting kynurenine metabolism.

Oncoimmunology. 2022

引用本文的文献

[1]
The challenges and progress of CAR-T cell therapy in the treatment of solid tumors.

Mol Cell Biochem. 2025-6-23

本文引用的文献

[1]
Inhibition of ERO1a and IDO1 improves dendritic cell infiltration into pancreatic ductal adenocarcinoma.

Front Immunol. 2023

[2]
Sphingomyelin-derived nanovesicles for the delivery of the IDO1 inhibitor epacadostat enhance metastatic and post-surgical melanoma immunotherapy.

Nat Commun. 2023-11-9

[3]
Bendamustine vs. fludarabine/cyclophosphamide lymphodepletion prior to BCMA CAR-T cell therapy in multiple myeloma.

Blood Cancer J. 2023-10-13

[4]
-derived metabolites boost anti-PD1 efficacy in colorectal cancer by inhibiting regulatory T cells through modulating IDO1/Kyn/AHR axis.

Gut. 2023-11-24

[5]
Bendamustine lymphodepletion is a well-tolerated alternative to fludarabine and cyclophosphamide lymphodepletion for axicabtagene ciloleucel therapy for aggressive B-cell lymphoma.

Am J Hematol. 2023-11

[6]
Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments.

J Transl Med. 2023-7-7

[7]
Tryptophan metabolism in health and disease.

Cell Metab. 2023-8-8

[8]
The catalytic inhibitor epacadostat can affect the non-enzymatic function of IDO1.

Front Immunol. 2023

[9]
Rational Alternatives to Fludarabine and Cyclophosphamide-Based Pre-CAR Lymphodepleting Regimens in the Pediatric and Young Adult B-ALL Setting.

Curr Oncol Rep. 2023-8

[10]
Metabolic challenges and interventions in CAR T cell therapy.

Sci Immunol. 2023-4-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索