Suppr超能文献

量化土壤地球化学多表面模型的准确性、不确定性和敏感性。

Quantifying the Accuracy, Uncertainty, and Sensitivity of Soil Geochemical Multisurface Models.

作者信息

Wiersma Wietse, Van Eynde Elise, Comans Rob N J, Groenenberg Jan E

机构信息

Soil Chemistry Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands.

Soil Biology Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands.

出版信息

Environ Sci Technol. 2025 Mar 18;59(10):5172-5181. doi: 10.1021/acs.est.4c04812. Epub 2025 Mar 5.

Abstract

Geochemical multisurface models and their generic parameters for the solid-solution partitioning and speciation of metals have been used for decades. For soils the collective uncertainty and sensitivity of model parameters and soil-specific reactive surface properties has been insufficiently evaluated. We used statistical tools and data of diverse soils to quantify for Cd, Cu and Zn the uncertainty of model parameters and input values of the nonideal competitive adsorption (NICA)-Donnan model for organic matter (OM) coupled with the generalized two-layer model for metal-oxides. Subsequently, we quantified the uncertainty of speciation predictions and the sensitivity to model parameters and input values. Importantly, we established new generic NICA-Donnan parameters that substantially improved model accuracy, especially for Zn. Uncertainties generally followed Cu < Cd < Zn. With OM being the major binding surface across most soils, the affinity parameters (log ) were most influential. Compared to a "best-case" scenario with all relevant soil properties measured, a "simplified" scenario with assumptions about OM fractionation and metal-oxide specific surface area could be employed with a negligible effect on model accuracy and uncertainty. Our study provides a reference work with quantitative measures of model performance, which facilitates broader adoption of mechanistic multisurface models in addressing environmental challenges.

摘要

地球化学多表面模型及其用于金属固溶体分配和形态分析的通用参数已经使用了数十年。对于土壤而言,模型参数和土壤特定反应表面性质的总体不确定性和敏感性尚未得到充分评估。我们使用统计工具和多种土壤的数据,针对镉、铜和锌,量化了与金属氧化物通用双层模型相结合的有机质非理想竞争吸附(NICA)-唐南模型的模型参数和输入值的不确定性。随后,我们量化了形态预测的不确定性以及对模型参数和输入值的敏感性。重要的是,我们建立了新的通用NICA-唐南参数,显著提高了模型准确性,尤其是对于锌。不确定性一般遵循铜<镉<锌的顺序。由于有机质是大多数土壤中的主要结合表面,亲和参数(log )最具影响力。与测量所有相关土壤性质的“最佳情况”方案相比,采用关于有机质分级和金属氧化物比表面积假设的“简化”方案对模型准确性和不确定性的影响可忽略不计。我们的研究提供了一项具有模型性能定量指标的参考工作,有助于更广泛地采用机理多表面模型来应对环境挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2af4/11924228/8c5dc4126f3e/es4c04812_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验