Yang Fang, Shi Zewen, Hu Yiwei, Pang Qian, Du Tianyu, Song Baiyang, Zhong Jiaqi, Hu Xiaodong, Zhu Weilai, Chen Junhong, Shi Lin, Chen Xianjun, Pang Qingjiang, Zhu Yabin
Health Science Center, Ningbo University, Ningbo, 315211, P. R. China.
Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, 315000, P. R. China.
Adv Healthc Mater. 2025 Apr;14(11):e2500092. doi: 10.1002/adhm.202500092. Epub 2025 Mar 5.
Methicillin-resistant Staphylococcus aureus (MRSA)-related bone defects pose significant clinical challenges due to treatment failures. Here, an injectable nanohybrid hydrogel (FND-ZHD) is developed that combines controlled low-temperature photothermal antibacterial therapy with enhanced bone regeneration. The hydrogel uses Pluronic F-127 as the matrix, incorporating polydopamine-coated nano-hydroxyapatite and zinc oxide nanoparticles encapsulated with polydopamine and hyaluronic acid, forming a sophisticated nanostructured composite. Under near-infrared (NIR) irradiation, the FND-ZHD hydrogel exhibits efficient photothermal properties, enabling precise low-temperature photothermal therapy to eliminate MRSA infections. The photothermal process generates reactive oxygen species (ROS), contributing to potent antibacterial activity, while the hydrogel design allows self-elimination of excess ROS to minimize cytotoxicity. Simultaneously, the hydrogel enhances bone regeneration by upregulating heat shock protein 70 (HSP70), promoting osteogenic differentiation and accelerating bone repair. In vitro and in vivo experiments demonstrate that the FND-ZHD hydrogel not only possesses strong antibacterial efficacy against MRSA but also significantly improves bone healing in infected bone defect models. This dual-function strategy leverages the synergistic effects of nanomaterials at the nano- and microscale, achieving simultaneous antibacterial action and bone regeneration. The work highlights the potential of nanotechnology-based multifunctional biomaterials in addressing complex medical problems, paving the way for advanced therapies in orthopedic and regenerative medicine.
耐甲氧西林金黄色葡萄球菌(MRSA)相关的骨缺损因治疗失败而带来重大临床挑战。在此,开发了一种可注射的纳米复合水凝胶(FND-ZHD),它将可控低温光热抗菌疗法与增强的骨再生相结合。该水凝胶以泊洛沙姆F-127为基质,包含聚多巴胺包覆的纳米羟基磷灰石以及用聚多巴胺和透明质酸包覆的氧化锌纳米颗粒,形成一种复杂的纳米结构复合材料。在近红外(NIR)照射下,FND-ZHD水凝胶展现出高效的光热性能,能够实现精确的低温光热疗法以消除MRSA感染。光热过程产生活性氧(ROS),有助于产生强大的抗菌活性,而水凝胶的设计允许过量ROS的自我消除,以将细胞毒性降至最低。同时,该水凝胶通过上调热休克蛋白70(HSP70)来增强骨再生,促进成骨分化并加速骨修复。体外和体内实验表明,FND-ZHD水凝胶不仅对MRSA具有强大的抗菌功效,而且在感染性骨缺损模型中能显著改善骨愈合。这种双功能策略利用了纳米材料在纳米和微观尺度上的协同效应,实现了同时抗菌和骨再生。这项工作突出了基于纳米技术的多功能生物材料在解决复杂医学问题方面的潜力,为骨科和再生医学的先进疗法铺平了道路。