Uzunçar Sinan, Maroli Gabriel, Urban Massimo, Merkoçi Arben
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
Environmental Engineering Department, Engineering Faculty, Zonguldak Bülent Ecevit University, Zonguldak, 67100, Turkey.
Adv Sci (Weinh). 2025 May;12(20):e2500365. doi: 10.1002/advs.202500365. Epub 2025 Mar 6.
Prussian-blue nanoparticles (PBNPs) show promise in electrochemical hydrogen peroxide (HO) sensing but face operational stability challenges without complex strategies. This study introduces a simplified, polymer-based synthesis method, enhancing their stability in a single step. Chemical polymerization of Prussian-blue (PB) and poly(3,4-ethylenedioxythiophene) (PEDOT) with gelatin as a polycationic soft template yields a self-assembled PB-infused Catalytic Hetero-interface Architecture (PB-CHIA) that remarkably improves the stability of PBNPs and offers functional groups for enzyme immobilization, supporting robust biosensing applications. The softened PEDOT rigidity extends PB-CHIA's applicability to various carbonaceous electrode substrates, including glassy carbon and laser-induced graphene (LIG) via simple drop-casting. A fluidic cell module designed with the optimized LIG morphology (nano-fibrous fringes, LIG-F, diameter: 72.87 ± 12.24 nm) modified with PB-CHIA and glucose oxidase enables non-invasive urine glucose monitoring. The configuration accurately quantifies glucose within a linear range of 10-400 µM [R: 0.991, Sensitivity: 29.88 ± 4.98 µA mM⁻¹ cm⁻, Detection Limit: 4.52 ± 2.24 µM], covering medical needs. A near-field communication potentiostat is devised for a fully integrated, batteryless, wireless point-of-care (POC) prototype, enabling rapid smartphone readouts in 15 s for daily home-based use. The stable operation of PB-CHIA allows working electrodes' scalable production, highlighting its potential for diverse POC devices in urinary analysis reliant on HO assays.
普鲁士蓝纳米颗粒(PBNPs)在电化学过氧化氢(HO)传感方面显示出前景,但在没有复杂策略的情况下面临操作稳定性挑战。本研究引入了一种简化的、基于聚合物的合成方法,一步提高了它们的稳定性。以明胶作为聚阳离子软模板对普鲁士蓝(PB)和聚(3,4-乙撑二氧噻吩)(PEDOT)进行化学聚合,产生了一种自组装的注入PB的催化异质界面结构(PB-CHIA),该结构显著提高了PBNPs的稳定性,并为酶固定提供了官能团,支持强大的生物传感应用。软化的PEDOT刚性通过简单的滴铸将PB-CHIA的适用性扩展到各种碳质电极基底,包括玻碳和激光诱导石墨烯(LIG)。设计了一种流体池模块,其具有用PB-CHIA和葡萄糖氧化酶修饰的优化LIG形态(纳米纤维条纹,LIG-F,直径:72.87±12.24 nm),能够进行无创尿液葡萄糖监测。该配置在10-400µM的线性范围内准确量化葡萄糖[R:0.991,灵敏度:
29.88±4.98µA mM⁻¹ cm⁻,检测限:4.52±2.24µM],满足医疗需求。设计了一种近场通信恒电位仪用于完全集成、无电池、无线即时护理(POC)原型,能够在15秒内实现快速智能手机读数,便于日常家庭使用。PB-CHIA的稳定运行允许工作电极的可扩展生产,突出了其在依赖HO检测的尿液分析中用于各种POC设备的潜力。