Suppr超能文献

PhoTorch:一个基于PyTorch的强大且通用的生化光合作用模型拟合软件包。

PhoTorch: a robust and generalized biochemical photosynthesis model fitting package based on PyTorch.

作者信息

Lei Tong, Rizzo Kyle T, Bailey Brian N

机构信息

Department of Plant Sciences, University of California, Davis, Davis, CA, USA.

出版信息

Photosynth Res. 2025 Mar 6;163(2):21. doi: 10.1007/s11120-025-01136-7.

Abstract

Advancements in artificial intelligence (AI) have greatly benefited plant phenotyping and predictive modeling. However, unrealized opportunities exist in leveraging AI advancements in model parameter optimization for parameter fitting in complex biophysical models. This work developed novel software, PhoTorch, for fitting parameters of the Farquhar, von Caemmerer, and Berry (FvCB) biochemical photosynthesis model based on the parameter optimization components of the popular AI framework PyTorch. The primary novelty of the software lies in its computational efficiency, robustness of parameter estimation, and flexibility in handling different types of response curves and sub-model functional forms. PhoTorch can fit both steady-state and non-steady-state gas exchange data with high efficiency and accuracy. Its flexibility allows for optional fitting of temperature and light response parameters, and can simultaneously fit light response curves and standard curves. These features are not available within presently available curve fitting packages. Results illustrated the robustness and efficiency of PhoTorch in fitting curves with high variability and some level of artifacts and noise. PhoTorch is more than four times faster than benchmark software, which may be relevant when processing many non-steady-state curves with hundreds of data points per curve. PhoTorch provides researchers from various fields with a reliable and efficient tool for analyzing photosynthetic data. The Python package is openly accessible from the repository: https://github.com/GEMINI-Breeding/photorch .

摘要

人工智能(AI)的进步极大地促进了植物表型分析和预测建模。然而,在利用AI进步进行复杂生物物理模型的参数拟合以优化模型参数方面,仍存在尚未实现的机遇。这项工作基于流行的AI框架PyTorch的参数优化组件,开发了用于拟合Farquhar、von Caemmerer和Berry(FvCB)生化光合作用模型参数的新型软件PhoTorch。该软件的主要新颖之处在于其计算效率、参数估计的稳健性以及处理不同类型响应曲线和子模型函数形式的灵活性。PhoTorch能够高效且准确地拟合稳态和非稳态气体交换数据。其灵活性允许对温度和光响应参数进行可选拟合,并且能够同时拟合光响应曲线和标准曲线。这些功能在目前可用的曲线拟合软件包中是没有的。结果表明,PhoTorch在拟合具有高变异性以及一定程度伪影和噪声的曲线时具有稳健性和效率。PhoTorch比基准软件快四倍多,这在处理每条曲线有数百个数据点的许多非稳态曲线时可能很重要。PhoTorch为各个领域的研究人员提供了一个可靠且高效的光合数据分析工具。该Python软件包可从以下存储库公开获取:https://github.com/GEMINI-Breeding/photorch

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验