Stinziano Jospeh R, Roback Cassaundra, Sargent Demi, Murphy Bridget K, Hudson Patrick J, Muir Christopher D
Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
Hawkesbury Institute for the Environment, Western Sydney University, Sydney 2753, Australia.
AoB Plants. 2021 Sep 19;13(5):plab059. doi: 10.1093/aobpla/plab059. eCollection 2021 Oct.
Plant ecophysiology is founded on a rich body of physical and chemical theory, but it is challenging to connect theory with data in unambiguous, analytically rigorous and reproducible ways. Custom scripts written in computer programming languages (coding) enable plant ecophysiologists to model plant processes and fit models to data reproducibly using advanced statistical techniques. Since many ecophysiologists lack formal programming education, we have yet to adopt a unified set of coding principles and standards that could make coding easier to learn, use and modify. We identify eight principles to help in plant ecophysiologists without much programming experience to write resilient code: (i) standardized nomenclature, (ii) consistency in style, (iii) increased modularity/extensibility for easier editing and understanding, (iv) code scalability for application to large data sets, (v) documented contingencies for code maintenance, (vi) documentation to facilitate user understanding; (vii) extensive tutorials and (viii) unit testing and benchmarking. We illustrate these principles using a new R package, {photosynthesis}, which provides a set of analytical and simulation tools for plant ecophysiology. Our goal with these principles is to advance scientific discovery in plant ecophysiology by making it easier to use code for simulation and data analysis, reproduce results and rapidly incorporate new biological understanding and analytical tools.
植物生态生理学建立在丰富的物理和化学理论基础之上,但要以清晰明确、分析严谨且可重复的方式将理论与数据联系起来具有挑战性。用计算机编程语言编写的自定义脚本(编码)使植物生态生理学家能够对植物过程进行建模,并使用先进的统计技术将模型与数据进行可重复拟合。由于许多生态生理学家缺乏正规的编程教育,我们尚未采用一套统一的编码原则和标准,而这些原则和标准本可以使编码更易于学习、使用和修改。我们确定了八项原则,以帮助没有太多编程经验的植物生态生理学家编写可靠的代码:(i)标准化命名法;(ii)风格一致;(iii)提高模块化/可扩展性以便于编辑和理解;(iv)代码可扩展性以应用于大型数据集;(v)记录意外情况以进行代码维护;(vi)编写文档以促进用户理解;(vii)提供大量教程;(viii)进行单元测试和基准测试。我们使用一个新的R包{photosynthesis}来说明这些原则,该包为植物生态生理学提供了一套分析和模拟工具。我们提出这些原则的目标是通过使代码更易于用于模拟和数据分析、重现结果以及迅速纳入新的生物学理解和分析工具,来推动植物生态生理学的科学发现。