Suppr超能文献

优化光合作用的法夸尔-冯·卡默勒-贝里模型参数的统计估计

Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis.

作者信息

Dubois Jean-Jacques B, Fiscus Edwin L, Booker Fitzgerald L, Flowers Michael D, Reid Chantal D

机构信息

United States Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, 3127 Ligon Street, Raleigh, NC 27607, USA.

Crop Science Department, North Carolina State University, 3127 Ligon Street, Raleigh, NC 27607, USA.

出版信息

New Phytol. 2007;176(2):402-414. doi: 10.1111/j.1469-8137.2007.02182.x.

Abstract

The model of Farquhar, von Caemmerer and Berry is the standard in relating photosynthetic carbon assimilation and concentration of intercellular CO(2). The techniques used in collecting the data from which its parameters are estimated have been the object of extensive optimization, but the statistical aspects of estimation have not received the same attention. The model segments assimilation into three regions, each modeled by a distinct function. Three parameters of the model, namely the maximum rate of Rubisco carboxylation (V(c max)), the rate of electron transport (J), and nonphotorespiratory CO(2) evolution (R(d)), are customarily estimated from gas exchange data through separate fitting of the component functions corresponding to the first two segments. This disjunct approach is problematic in requiring preliminary arbitrary subsetting of data into sets believed to correspond to each region. It is shown how multiple segments can be estimated simultaneously, using the entire data set, without predetermination of transitions by the investigator. Investigation of the number of parameters that can be estimated in the two-segment model suggests that, under some conditions, it is possible to estimate four or even five parameters, but that only V(c max), J, and R(d), have good statistical properties. Practical difficulties and their solutions are reviewed, and software programs are provided.

摘要

法夸尔、冯·凯默勒和贝里的模型是关联光合碳同化与细胞间二氧化碳浓度的标准模型。用于收集估计其参数所需数据的技术一直是广泛优化的对象,但估计的统计方面却未受到同样的关注。该模型将同化作用分为三个区域,每个区域由一个不同的函数建模。该模型的三个参数,即核酮糖-1,5-二磷酸羧化酶最大羧化速率(V(c max))、电子传递速率(J)和非光呼吸性二氧化碳释放速率(R(d)),通常通过分别拟合对应于前两个区域的分量函数,从气体交换数据中进行估计。这种分离的方法存在问题,因为它需要将数据预先任意子集化为据信对应于每个区域的集合。本文展示了如何使用整个数据集同时估计多个区域,而无需研究者预先确定转变点。对两段模型中可估计参数数量的研究表明,在某些条件下,可以估计四个甚至五个参数,但只有V(c max)、J和R(d)具有良好的统计特性。本文回顾了实际困难及其解决方案,并提供了软件程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验