Ramirez Hugo, Tabarelli Davide, Brancaccio Arianna, Belardinelli Paolo, Marsh Elisabeth B, Funke Michael, Mosher John C, Maestu Fernando, Xu Mengjia, Pantazis Dimitrios
IEEE J Biomed Health Inform. 2025 Jun;29(6):4463-4473. doi: 10.1109/JBHI.2025.3540937.
Characterizing age-related alterations in brain networks is crucial for understanding aging trajectories and identifying deviations indicative of neurodegenerative disorders, such as Alzheimer's disease. In this study, we developed a Fully Hyperbolic Neural Network (FHNN) to embed functional brain connectivity graphs derived from magnetoencephalography (MEG) data into low dimensions on a Lorentz model of hyperbolic space. Using this model, we computed hyperbolic embeddings of the MEG brain networks of 587 individuals from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) dataset. Notably, we leveraged a unique metric-the radius of the node embeddings-which effectively captures the hierarchical organization of the brain, to characterize subtle hierarchical organizational changes in various brain subnetworks attributed to the aging process. Our findings revealed that a considerable number of subnetworks exhibited a reduction in hierarchy during aging, with some showing gradual changes and others undergoing rapid transformations in the elderly. Moreover, we demonstrated that hyperbolic features outperform traditional graph-theoretic measures in capturing age-related information in brain networks. Overall, our study represents the first evaluation of hyperbolic embeddings in MEG brain networks for studying aging trajectories, shedding light on critical regions undergoing significant age-related alterations in the large cohort of the Cam-CAN dataset.
表征大脑网络中与年龄相关的变化对于理解衰老轨迹以及识别指示神经退行性疾病(如阿尔茨海默病)的偏差至关重要。在本研究中,我们开发了一种全双曲神经网络(FHNN),以将源自脑磁图(MEG)数据的功能性脑连接图嵌入到双曲空间的洛伦兹模型上的低维空间中。使用该模型,我们计算了来自剑桥衰老与神经科学中心(Cam-CAN)数据集的587名个体的MEG脑网络的双曲嵌入。值得注意的是,我们利用了一种独特的度量——节点嵌入的半径,它有效地捕捉了大脑的层次组织,以表征衰老过程中各个脑子网中细微的层次组织变化。我们的研究结果表明,相当数量的子网在衰老过程中表现出层次结构的减少,其中一些在老年人中显示出逐渐变化,而另一些则经历了快速转变。此外,我们证明了双曲特征在捕捉脑网络中与年龄相关的信息方面优于传统的图论测量方法。总体而言,我们的研究代表了对MEG脑网络中双曲嵌入用于研究衰老轨迹的首次评估,揭示了Cam-CAN数据集中大量队列中经历显著年龄相关变化的关键区域。