Suppr超能文献

基于病变连接组学的多模态放射组学预测中风预后。

Multimodal radiomics based on lesion connectome predicts stroke prognosis.

作者信息

Wu Ning, Lu Wei, Xu Mingze

机构信息

Department of Medical Imaging, Yanjing Medical College, Capital Medical University, Beijing 101300, China.

Department of Critical Care Rehabilitation, Shandong Provincial Third Hospital, Shandong University, Jinan 250031, China.

出版信息

Comput Methods Programs Biomed. 2025 May;263:108701. doi: 10.1016/j.cmpb.2025.108701. Epub 2025 Mar 1.

Abstract

BACKGROUND

Stroke significantly contributes to global mortality and disability, emphasizing the critical need for effective prognostic evaluations. Connectome-based lesion-symptom mapping (CLSM) identifies structural and functional connectivity disruptions related to the lesion, while radiomics extracts high-dimensional quantitative data from multimodal medical images. Despite the potential of these methodologies, no study has yet integrated CLSM and multimodal radiomics for acute ischemic stroke (AIS).

METHODS

This retrospective study analyzed lesion, structural disconnection (SDC), and functional disconnection (FDC) maps of 148 patients with AIS and assessed their association with the National Institutes of Health Stroke Scale (NIHSS) score at admission and prognostic outcomes, measured by the modified Rankin Scale at six months. Additionally, an innovative approach was proposed by utilizing the SDC map as mask, and radiomic features were extracted and selected from T1-weighted imaging, diffusion-weighted imaging, apparent diffusion coefficient, susceptibility-weighted imaging, and fluid-attenuated inversion recovery images. Five machine learning classifiers were then used to predict the prognosis of AIS.

RESULTS

This study constructed lesion, SDC and FDC maps to correlate with NIHSS scores and prognostic outcomes, thereby revealing the neuroanatomical mechanisms underlying neural damage and prognosis. Poor prognosis was associated with distal cortical dysfunction and fiber disconnection. Fifteen radiomic features within SDC maps from multimodal imaging were selected as inputs for machine learning models. Among the five classifiers tested, Categorical Boosting achieved the highest performance (AUC = 0.930, accuracy = 0.836).

CONCLUSION

A novel model integrating CLSM and multimodal radiomics was proposed to predict long-term prognosis in AIS, which would be a promising tool for early prognostic evaluation and therapeutic planning. Further investigation is needed to assess its robustness in clinical application.

摘要

背景

中风对全球死亡率和残疾率有重大影响,凸显了有效预后评估的迫切需求。基于脑连接组的病变-症状映射(CLSM)可识别与病变相关的结构和功能连接中断,而放射组学则从多模态医学图像中提取高维定量数据。尽管这些方法具有潜力,但尚无研究将CLSM和多模态放射组学用于急性缺血性中风(AIS)。

方法

这项回顾性研究分析了148例AIS患者的病变、结构断开(SDC)和功能断开(FDC)图谱,并评估了它们与入院时美国国立卫生研究院卒中量表(NIHSS)评分以及六个月时改良Rankin量表测量的预后结果之间的关联。此外,提出了一种创新方法,以SDC图谱为掩码,从T1加权成像、扩散加权成像、表观扩散系数、磁敏感加权成像和液体衰减反转恢复图像中提取并选择放射组学特征。然后使用五个机器学习分类器预测AIS的预后。

结果

本研究构建了病变、SDC和FDC图谱,以与NIHSS评分和预后结果相关联,从而揭示神经损伤和预后的神经解剖学机制。预后不良与远端皮质功能障碍和纤维断开有关。从多模态成像的SDC图谱中选择了15个放射组学特征作为机器学习模型的输入。在测试的五个分类器中,分类增强算法表现最佳(AUC = 0.930,准确率 = 0.836)。

结论

提出了一种整合CLSM和多模态放射组学的新型模型来预测AIS的长期预后,这将是早期预后评估和治疗规划的一个有前景的工具。需要进一步研究以评估其在临床应用中的稳健性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验