Lien Synne Krekling, Walnum Harald Taxt, Sørensen Åse Lekang
Sintef Community, Oslo, Norway.
Department of Electric Energy, Norwegian University of Science and Technology, Trondheim, Norway.
Sci Data. 2025 Mar 6;12(1):393. doi: 10.1038/s41597-025-04708-3.
To limit energy consumption and peak loads with increased electrification of our society, more information is needed about the energy use in buildings. This article presents a data set that contains 4 years (Jan. 2018- Dec. 2021/Mar. 2022) of hourly measurements of energy and weather data from 45 public buildings located in Drammen, Norway. The buildings are schools (16), kindergartens (20), nursing homes (7) and offices (2). For each building, the data set contains contextual data about the buildings including their floor area, construction year, energy label, information about their heating system and ventilation system in addition to time series data of energy use and weather data. For some of the buildings, the energy measurements only contain measurements of hourly imported electricity, while the time series data for other buildings have submeters for different energy services and technologies. Researchers, energy analysts, building owners and policy makers can benefit from the dataset for e.g. hourly load disaggregation, forecasting of energy loads and flexibility, grid planning and modelling activities.
为了随着社会电气化程度的提高来限制能源消耗和峰值负荷,我们需要更多关于建筑物能源使用的信息。本文展示了一个数据集,其中包含位于挪威德拉门的45座公共建筑4年(2018年1月至2021年12月/2022年3月)的每小时能源和天气数据测量值。这些建筑包括学校(16座)、幼儿园(20座)、养老院(7座)和办公室(2座)。对于每座建筑,该数据集除了包含能源使用和天气数据的时间序列数据外,还包含有关建筑物的上下文数据,包括其建筑面积、建造年份、能源标签、供暖系统和通风系统的信息。对于一些建筑,能源测量仅包含每小时进口电力的测量值,而其他建筑的时间序列数据则有针对不同能源服务和技术的子计量表。研究人员、能源分析师、建筑业主和政策制定者可以从该数据集中受益,例如用于每小时负荷分解、能源负荷预测和灵活性分析、电网规划以及建模活动。