Scully James, Hinsley Carter, Bloom David, Meijer Hil G E, Shilnikov Andrey L
Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, Georgia 30303, USA.
Department of Mathematics and Statistics, Georgia State University, 25 Park Pl., Atlanta, Georgia 30303, USA.
Chaos. 2025 Mar 1;35(3). doi: 10.1063/5.0248001.
This paper investigates the origin and onset of chaos in a mathematical model of an individual neuron, arising from the intricate interaction between 3D fast and 2D slow dynamics governing its intrinsic currents. Central to the chaotic dynamics are multiple homoclinic connections and bifurcations of saddle equilibria and periodic orbits. This neural model reveals a rich array of codimension-2 bifurcations, including Shilnikov-Hopf, Belyakov, Bautin, and Bogdanov-Takens points, which play a pivotal role in organizing the complex bifurcation structure of the parameter space. We explore various routes to chaos occurring at the intersections of quiescent, tonic spiking, and bursting activity regimes within this space and provide a thorough bifurcation analysis. Despite the high dimensionality of the model, its fast-slow dynamics allow a reduction to a one-dimensional return map, accurately capturing and explaining the complex dynamics of the neural model. Our approach integrates parameter continuation analysis, newly developed symbolic techniques, and Lyapunov exponents, collectively unveiling the intricate dynamical and bifurcation structures present in the system.
本文研究了单个神经元数学模型中混沌的起源和起始,该混沌源于控制其内在电流的三维快速动力学和二维慢速动力学之间的复杂相互作用。混沌动力学的核心是多个同宿连接以及鞍点平衡和周期轨道的分岔。这个神经模型揭示了一系列丰富的二维余维分岔,包括希利尼科夫 - 霍普夫点、别利亚科夫点、鲍廷点和博格达诺夫 - 塔克恩斯点,它们在组织参数空间的复杂分岔结构中起着关键作用。我们探索了在该空间内静息、强直性放电和爆发性活动状态的交点处出现混沌的各种途径,并进行了全面的分岔分析。尽管该模型具有高维性,但其快慢动力学允许简化为一维返回映射,从而准确地捕捉和解释神经模型的复杂动力学。我们的方法整合了参数延拓分析、新开发的符号技术和李雅普诺夫指数,共同揭示了系统中存在的复杂动力学和分岔结构。