Shilnikov Andrey, Calabrese Ronald L, Cymbalyuk Gennady
Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):056214. doi: 10.1103/PhysRevE.71.056214. Epub 2005 May 31.
Neurons can demonstrate various types of activity; tonically spiking, bursting as well as silent neurons are frequently observed in electrophysiological experiments. The methods of qualitative theory of slow-fast systems applied to biophysically realistic neuron models can describe basic scenarios of how these regimes of activity can be generated and transitions between them can be made. Here we demonstrate that a bifurcation of a codimension one can explain a transition between tonic spiking behavior and bursting behavior. Namely, we argue that the Lukyanov-Shilnikov bifurcation of a saddle-node periodic orbit with noncentral homoclinics may initiate a bistability observed in a model of a leech heart interneuron under defined pharmacological conditions. This model can exhibit two coexisting types of oscillations: tonic spiking and bursting, depending on the initial state of the neuron model. Moreover, the neuron model also generates weakly chaotic bursts when a control parameter is close to the bifurcation values that correspond to homoclinic bifurcations of a saddle or a saddle-node periodic orbit.
神经元可表现出多种类型的活动;在电生理实验中经常观察到持续发放、爆发式发放以及静息神经元。将快慢系统定性理论方法应用于生物物理现实的神经元模型,可以描述这些活动模式是如何产生以及它们之间如何转换的基本情形。在此我们证明,一维余维分岔可以解释持续发放行为和爆发式发放行为之间的转换。具体而言,我们认为具有非中心同宿轨道的鞍结周期轨道的卢基扬诺夫 - 希利尼科夫分岔可能引发在特定药理学条件下在水蛭心脏中间神经元模型中观察到的双稳态。该模型可以表现出两种共存的振荡类型:持续发放和爆发式发放,这取决于神经元模型的初始状态。此外,当控制参数接近对应于鞍点或鞍结周期轨道同宿分岔的分岔值时,神经元模型还会产生弱混沌爆发。