Suppr超能文献

大语言模型时代的健康公平性。

Health equity in the era of large language models.

作者信息

Tierney Aaron A, Reed Mary E, Grant Richard W, Doo Florence X, Payán Denise D, Liu Vincent X

机构信息

Kaiser Permanente Northern California Division of Research, 4480 Hacienda Dr, Pleasanton, CA 94588. Email:

出版信息

Am J Manag Care. 2025 Mar;31(3):112-117. doi: 10.37765/ajmc.2025.89695.

Abstract

This commentary presents a summary of 8 major regulations and guidelines that have direct implications for the equitable design, implementation, and maintenance of health care-focused large language models (LLMs) deployed in the US. We grouped key equity issues for LLMs into 3 domains: (1) linguistic and cultural bias, (2) accessibility and trust, and (3) oversight and quality control. Solutions shared by these regulations and guidelines are to (1) ensure diverse representation in training data and in teams that develop artificial intelligence (AI) tools, (2) develop techniques to evaluate AI-enabled health care tool performance against real-world data, (3) ensure that AI used in health care is free of discrimination and integrates equity principles, (4) take meaningful steps to ensure access for patients with limited English proficiency, (5) apply AI tools to make workplaces more efficient and reduce administrative burdens, (6) require human oversight of AI tools used in health care delivery, and (7) ensure AI tools are safe, accessible, and beneficial while respecting privacy. There is an opportunity to prevent further embedding of existing disparities and issues in the health care system by enhancing health equity through thoughtfully designed and deployed LLMs.

摘要

本评论总结了8项主要法规和指南,这些法规和指南对在美国部署的以医疗保健为重点的大语言模型(LLM)的公平设计、实施和维护具有直接影响。我们将LLM的关键公平问题分为3个领域:(1)语言和文化偏见,(2)可及性和信任,以及(3)监督和质量控制。这些法规和指南共享的解决方案包括:(1)确保训练数据和开发人工智能(AI)工具的团队具有多样化代表性;(2)开发根据真实世界数据评估人工智能支持的医疗保健工具性能的技术;(3)确保医疗保健中使用的人工智能不存在歧视并融入公平原则;(4)采取有意义的措施确保英语水平有限的患者能够使用;(5)应用人工智能工具提高工作场所效率并减轻行政负担;(6)要求对医疗保健服务中使用的人工智能工具进行人工监督;(7)确保人工智能工具安全、可及且有益,同时尊重隐私。通过精心设计和部署LLM来促进健康公平,有机会防止医疗保健系统中现有差距和问题的进一步固化。

相似文献

1
Health equity in the era of large language models.大语言模型时代的健康公平性。
Am J Manag Care. 2025 Mar;31(3):112-117. doi: 10.37765/ajmc.2025.89695.
5
Utilizing large language models for gastroenterology research: a conceptual framework.利用大语言模型进行胃肠病学研究:一个概念框架。
Therap Adv Gastroenterol. 2025 Apr 1;18:17562848251328577. doi: 10.1177/17562848251328577. eCollection 2025.
6
Leveraging large language models to foster equity in healthcare.利用大型语言模型促进医疗保健公平。
J Am Med Inform Assoc. 2024 Sep 1;31(9):2147-2150. doi: 10.1093/jamia/ocae055.

本文引用的文献

3
Large Language Model-Based Responses to Patients' In-Basket Messages.基于大语言模型的患者收件箱消息回复。
JAMA Netw Open. 2024 Jul 1;7(7):e2422399. doi: 10.1001/jamanetworkopen.2024.22399.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验