Tierney Aaron A, Reed Mary E, Grant Richard W, Doo Florence X, Payán Denise D, Liu Vincent X
Kaiser Permanente Northern California Division of Research, 4480 Hacienda Dr, Pleasanton, CA 94588. Email:
Am J Manag Care. 2025 Mar;31(3):112-117. doi: 10.37765/ajmc.2025.89695.
This commentary presents a summary of 8 major regulations and guidelines that have direct implications for the equitable design, implementation, and maintenance of health care-focused large language models (LLMs) deployed in the US. We grouped key equity issues for LLMs into 3 domains: (1) linguistic and cultural bias, (2) accessibility and trust, and (3) oversight and quality control. Solutions shared by these regulations and guidelines are to (1) ensure diverse representation in training data and in teams that develop artificial intelligence (AI) tools, (2) develop techniques to evaluate AI-enabled health care tool performance against real-world data, (3) ensure that AI used in health care is free of discrimination and integrates equity principles, (4) take meaningful steps to ensure access for patients with limited English proficiency, (5) apply AI tools to make workplaces more efficient and reduce administrative burdens, (6) require human oversight of AI tools used in health care delivery, and (7) ensure AI tools are safe, accessible, and beneficial while respecting privacy. There is an opportunity to prevent further embedding of existing disparities and issues in the health care system by enhancing health equity through thoughtfully designed and deployed LLMs.
本评论总结了8项主要法规和指南,这些法规和指南对在美国部署的以医疗保健为重点的大语言模型(LLM)的公平设计、实施和维护具有直接影响。我们将LLM的关键公平问题分为3个领域:(1)语言和文化偏见,(2)可及性和信任,以及(3)监督和质量控制。这些法规和指南共享的解决方案包括:(1)确保训练数据和开发人工智能(AI)工具的团队具有多样化代表性;(2)开发根据真实世界数据评估人工智能支持的医疗保健工具性能的技术;(3)确保医疗保健中使用的人工智能不存在歧视并融入公平原则;(4)采取有意义的措施确保英语水平有限的患者能够使用;(5)应用人工智能工具提高工作场所效率并减轻行政负担;(6)要求对医疗保健服务中使用的人工智能工具进行人工监督;(7)确保人工智能工具安全、可及且有益,同时尊重隐私。通过精心设计和部署LLM来促进健康公平,有机会防止医疗保健系统中现有差距和问题的进一步固化。