Demirel Berken Utku, Dogan Adnan Harun, Rossie Juliete, Mobus Max, Holz Christian
IEEE Trans Vis Comput Graph. 2025 May;31(5):2525-2534. doi: 10.1109/TVCG.2025.3549132. Epub 2025 Apr 25.
Virtual reality (VR) presents immersive opportunities across many applications, yet the inherent risk of developing cybersickness during interaction can severely reduce enjoyment and platform adoption. Cybersickness is marked by symptoms such as dizziness and nausea, which previous work primarily assessed via subjective post-immersion questionnaires and motion-restricted controlled setups. In this paper, we investigate the dynamic nature of cybersickness while users experience and freely interact in VR. We propose a novel method to continuously identify and quantitatively gauge cybersickness levels from users' passively monitored electroencephalography (EEG) and head motion signals. Our method estimates multitaper spectrums from EEG, integrating specialized EEG processing techniques to counter motion artifacts, and, thus, tracks cybersickness levels in real-time. Unlike previous approaches, our method requires no user-specific calibration or personalization for detecting cybersickness. Our work addresses the considerable challenge of reproducibility and subjectivity in cybersickness research. In addition to our method's implementation, we release our dataset of 16 participants and approximately 2 hours of total recordings to spur future work in this domain. Source code: https://github.com/eth-siplab/EEG_Cybersickness_Estimation_VR-Beyond_Subjectivity.
虚拟现实(VR)在众多应用中提供了沉浸式体验机会,然而在交互过程中产生网络晕动症的固有风险会严重降低用户的体验感和平台采用率。网络晕动症的症状包括头晕和恶心等,先前的研究主要通过沉浸式体验后的主观问卷调查以及运动受限的受控设置来评估。在本文中,我们研究了用户在虚拟现实中体验和自由交互时网络晕动症的动态特性。我们提出了一种新颖的方法,通过对用户被动监测的脑电图(EEG)和头部运动信号进行连续识别和定量评估网络晕动症的程度。我们的方法通过整合专门的脑电图处理技术来对抗运动伪影,从脑电图中估计多窗谱,从而实时跟踪网络晕动症的程度。与先前的方法不同,我们的方法在检测网络晕动症时无需针对用户进行特定校准或个性化设置。我们的工作解决了网络晕动症研究中再现性和主观性方面的重大挑战。除了我们方法的实现,我们还发布了包含16名参与者以及约2小时总记录的数据集,以推动该领域的未来研究。源代码:https://github.com/eth-siplab/EEG_Cybersickness_Estimation_VR - Beyond_Subjectivity