Pilbery Richard, Sampson Fiona C, Herbert Esther, Goodacre Steve, Bell Fiona, Spaight Rob, Rosser Andy, Webster Peter, Millins Mark, Pountney Andrew, Coster Joanne, Long Jaqui, O'Hara Rachel, Foster Alexis, Miles Jamie, Turner Janette, Boyd Aimee
Research and Development, Yorkshire Ambulance Service NHS Trust, Wakefield, UK.
SCHARR, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
BMJ Open. 2025 Mar 7;15(3):e097122. doi: 10.1136/bmjopen-2024-097122.
Ambulance clinicians use prealert calls to advise emergency departments (ED) of the arrival of patients requiring immediate review or intervention. Consistency of prealert practice is important in ensuring appropriate ED response to prealert calls. We used routine data to describe prealert practice and explore factors affecting variation in practice.
We undertook a retrospective observational study in three UK ambulance services using a linked dataset incorporating 12 months' ambulance patient records, ambulance clinician data and emergency call data.
We used least absolute shrinkage and selection operator regression to identify candidate variables for multivariate logistic regression models to predict variation in prealert use, analysing clinician factors (role, experience, qualification, time of prealert during shift), patient factors (National Early Warning Score version 2, clinical working impression, age, sex) and hospital factors (receiving ED, ED handover delay status).
From the dataset of 1 363 274 patients conveyed to ED, 142 795 (10.5%) were prealerted, of whom 42 362 (30%) were for conditions with clear prealert pathways (eg, sepsis, stroke, ST-elevation myocardial infarction, major trauma). Prealert rates varied across and within different ambulance services. Casemix (illness acuity score, clinical diagnostic impression) was the strongest predictor of prealert use, but male patient sex, clinician role, receiving hospital and hospital turnaround delay at receiving hospitals were also statistically significant predictors, after adjusting for casemix. There was no evidence that prealert rates are higher during the final hour of shift.
Prealert decisions are influenced by factors other than illness acuity and clinical diagnostic impression alone. Variation in prealert practice suggests that procedures and processes for prealerting may lack clarity and improved prealert protocols may be required. Research is required to understand whether our findings are reproducible elsewhere and why non-clinical factors (eg, patient gender) may influence prealert practice.
救护车临床医生通过预报警电话告知急诊科(ED)有患者即将送达,这些患者需要立即检查或干预。预报警操作的一致性对于确保急诊科对预报警电话做出适当反应至关重要。我们使用常规数据来描述预报警操作,并探讨影响操作差异的因素。
我们在英国的三个救护车服务机构进行了一项回顾性观察研究,使用了一个关联数据集,其中包含12个月的救护车患者记录、救护车临床医生数据和急救电话数据。
我们使用最小绝对收缩和选择算子回归来确定多变量逻辑回归模型的候选变量,以预测预报警使用的差异,分析临床医生因素(角色、经验、资质、轮班期间预报警时间)、患者因素(国家早期预警评分第2版、临床工作印象、年龄、性别)和医院因素(接收急诊科、急诊科交接延迟状态)。
在转送至急诊科的1363274例患者的数据集中,有142795例(10.5%)收到了预报警,其中42362例(30%)是因有明确预报警途径的病症(如脓毒症、中风、ST段抬高型心肌梗死、重大创伤)。不同救护车服务机构之间以及内部的预报警率各不相同。病例组合(疾病严重程度评分、临床诊断印象)是预报警使用的最强预测因素,但在调整病例组合后,男性患者性别、临床医生角色、接收医院以及接收医院的周转延迟在统计学上也是显著的预测因素。没有证据表明在轮班的最后一小时预报警率更高。
预报警决策不仅受疾病严重程度和临床诊断印象的影响。预报警操作的差异表明,预报警的程序和流程可能不够清晰,可能需要改进预报警协议。需要开展研究以了解我们的研究结果在其他地方是否可重复,以及非临床因素(如患者性别)为何可能影响预报警操作。