Jiang Tong, Wang Hao, Zhu Huaze, Cao Junwei, Huo Xiaoqing, Yang Zhiqing, Li Junshuai, Ma Yaqing, Zhang Shengnan, Xu Xiang, Kong Wei
Zhejiang University, Hangzhou, 310027, China.
School of Engineering, Westlake University, Hangzhou, 310030, China.
Adv Sci (Weinh). 2025 May;12(17):e2417436. doi: 10.1002/advs.202417436. Epub 2025 Mar 8.
Gallium oxide (Ga₂O₃) is a promising wide-bandgap semiconductor for power devices, offering high breakdown voltage and low on-resistance. Among its polymorphs, β-Ga₂O₃ stands out due to the availability of high-quality, large-area single-crystalline substrates, particularly on the (100) surface, grown via melt-based bulk crystal growth. However, the low surface energy of β-Ga₂O₃ (100), akin to 2D materials, presents challenges in homoepitaxy, including poor nucleation and twin formation, which hinder its practical application. This study demonstrates the successful homoepitaxial growth of single-crystalline β-Ga₂O₃ on (100) substrates using a van der Waals epitaxial approach. By introducing an excess surfactant metal in metal-rich conditions at high temperature, a growth regime approximate thermal equilibrium is achieved, enhancing adatom diffusion and suppressing metastable twin phases. This adjustment enables the formation of well-ordered, single-crystalline nuclei and lateral stitching in a half-layer-by-half-layer growth mode, similar to 2D material growth. The result is twin-free, atomically flat, single-crystal thin films on on-axis β-Ga₂O₃ (100) substrates. These findings significantly improve the crystalline quality of epitaxial β-Ga₂O₃ on (100) substrates, demonstrating their potential for scalable production of high-performance, cost-effective β-Ga₂O₃-based power devices, and advancing their feasibility for industrial applications.
氧化镓(Ga₂O₃)是一种很有前景的用于功率器件的宽带隙半导体,具有高击穿电压和低导通电阻。在其多晶型物中,β-Ga₂O₃因其可获得高质量、大面积的单晶衬底而脱颖而出,特别是在(100)表面上,通过基于熔体的体单晶生长法生长而成。然而,β-Ga₂O₃(100)的低表面能类似于二维材料,在同质外延中带来了挑战,包括成核不良和孪晶形成,这阻碍了其实际应用。本研究展示了使用范德华外延方法在(100)衬底上成功实现单晶β-Ga₂O₃的同质外延生长。通过在高温富金属条件下引入过量的表面活性剂金属,实现了接近热平衡的生长状态,增强了吸附原子的扩散并抑制了亚稳孪晶相。这种调整使得能够以类似于二维材料生长的半层逐半层生长模式形成有序的单晶核和横向拼接。结果是在轴上β-Ga₂O₃(100)衬底上获得无孪晶、原子级平整的单晶薄膜。这些发现显著提高了(100)衬底上外延β-Ga₂O₃的晶体质量,证明了它们在可扩展生产高性能、经济高效的基于β-Ga₂O₃的功率器件方面的潜力,并推进了它们在工业应用中的可行性。