Rahaman Imteaz, Ellis Hunter D, Chang Cheng, Mudiyanselage Dinusha Herath, Xu Mingfei, Da Bingcheng, Fu Houqiang, Zhao Yuji, Fu Kai
Electrical and Computer Engineering, The University of Utah, Salt Lake City, UT 84112, USA.
Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
Materials (Basel). 2024 Aug 28;17(17):4261. doi: 10.3390/ma17174261.
Beta-phase gallium oxide (β-GaO) is a cutting-edge ultrawide bandgap (UWBG) semiconductor, featuring a bandgap energy of around 4.8 eV and a highly critical electric field strength of about 8 MV/cm. These properties make it highly suitable for next-generation power electronics and deep ultraviolet optoelectronics. Key advantages of β-GaO include the availability of large-size single-crystal bulk native substrates produced from melt and the precise control of n-type doping during both bulk growth and thin-film epitaxy. A comprehensive understanding of the fundamental growth processes, control parameters, and underlying mechanisms is essential to enable scalable manufacturing of high-performance epitaxial structures. This review highlights recent advancements in the epitaxial growth of β-GaO through various techniques, including Molecular Beam Epitaxy (MBE), Metal-Organic Chemical Vapor Deposition (MOCVD), Hydride Vapor Phase Epitaxy (HVPE), Mist Chemical Vapor Deposition (Mist CVD), Pulsed Laser Deposition (PLD), and Low-Pressure Chemical Vapor Deposition (LPCVD). This review concentrates on the progress of GaO growth in achieving high growth rates, low defect densities, excellent crystalline quality, and high carrier mobilities through different approaches. It aims to advance the development of device-grade epitaxial GaO thin films and serves as a crucial resource for researchers and engineers focused on UWBG semiconductors and the future of power electronics.
β相氧化镓(β-GaO)是一种前沿的超宽带隙(UWBG)半导体,其带隙能量约为4.8电子伏特,临界电场强度约为8兆伏/厘米。这些特性使其非常适合用于下一代功率电子学和深紫外光电子学。β-GaO的主要优势包括可获得由熔体生长的大尺寸单晶块状原生衬底,以及在块状生长和薄膜外延过程中对n型掺杂的精确控制。全面了解基本生长过程、控制参数和潜在机制对于实现高性能外延结构的可扩展制造至关重要。本综述重点介绍了通过各种技术,包括分子束外延(MBE)、金属有机化学气相沉积(MOCVD)、氢化物气相外延(HVPE)、雾状化学气相沉积(Mist CVD)、脉冲激光沉积(PLD)和低压化学气相沉积(LPCVD),在β-GaO外延生长方面的最新进展。本综述集中探讨了通过不同方法在实现高生长速率、低缺陷密度、优异晶体质量和高载流子迁移率方面GaO生长的进展。其目的是推动器件级外延GaO薄膜的发展,并为专注于UWBG半导体和功率电子学未来的研究人员和工程师提供重要资源。