Kuziel Gavin A, Lozano Gabriel L, Simian Corina, Li Long, Manion John, Stephen-Victor Emmanuel, Chatila Talal, Dong Min, Weng Jing-Ke, Rakoff-Nahoum Seth
Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology & Department of Bioengineering, Northeastern University, Boston, MA 02120, USA; Institute for Plant-Human Interface, Northeastern University, Boston, MA 02120, USA.
Cell. 2025 Apr 3;188(7):1967-1983.e22. doi: 10.1016/j.cell.2025.01.045. Epub 2025 Mar 7.
Plants are composed of diverse secondary metabolites (PSMs), which are widely associated with human health. Whether and how the gut microbiome mediates such impacts of PSMs is poorly understood. Here, we show that discrete dietary and medicinal phenolic glycosides, abundant health-associated PSMs, are utilized by distinct members of the human gut microbiome. Within the Bacteroides, the predominant gram-negative bacteria of the Western human gut, we reveal a specialized multi-enzyme system dedicated to the processing of distinct glycosides based on structural differences in phenolic moieties. This Bacteroides metabolic system liberates chemically distinct aglycones with diverse biological functions, such as colonization resistance against the gut pathogen Clostridioides difficile via anti-microbial activation of polydatin to the stilbene resveratrol and intestinal homeostasis via activation of salicin to the immunoregulatory aglycone saligenin. Together, our results demonstrate generation of biological diversity of phenolic aglycone "effector" functions by a distinct gut-microbiome-encoded PSM-processing system.
植物由多种次生代谢产物(PSMs)组成,这些次生代谢产物与人类健康广泛相关。肠道微生物群是否以及如何介导PSMs的这种影响,目前还知之甚少。在这里,我们表明,不同的饮食和药用酚糖苷,即大量与健康相关的PSMs,可被人类肠道微生物群的不同成员利用。在拟杆菌属中,这是西方人类肠道中占主导地位的革兰氏阴性菌,我们发现了一个专门的多酶系统,该系统基于酚类部分的结构差异,专门用于处理不同的糖苷。这种拟杆菌代谢系统可释放具有不同生物学功能的化学性质不同的苷元,例如通过将虎杖苷抗菌激活为芪类白藜芦醇来抵抗肠道病原体艰难梭菌的定植,以及通过将水杨苷激活为免疫调节苷元水杨醇来维持肠道稳态。总之,我们的结果证明了由独特的肠道微生物群编码的PSM加工系统产生了酚类苷元“效应器”功能的生物多样性。