Suppr超能文献

用于神经形态计算中提高功率效率的新型溶液法制备的FeO/WS混合纳米复合动态忆阻器

Novel Solution-Processed FeO/WS Hybrid Nanocomposite Dynamic Memristor for Advanced Power Efficiency in Neuromorphic Computing.

作者信息

Ghafoor Faisal, Kim Honggyun, Ghafoor Bilal, Ahmed Zaheer, Khan Muhammad Farooq, Rabeel Muhammad, Maqsood Muhammad Faheem, Nasir Sobia, Zulfiqar Wajid, Dastageer Ghulam, Lee Myoung-Jae, Kim Deok-Kee

机构信息

Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, 05006, Republic of Korea.

Department of Semiconductor Systems Engineering, Sejong University, Seoul, 05006, Republic of Korea.

出版信息

Adv Sci (Weinh). 2025 May;12(17):e2408133. doi: 10.1002/advs.202408133. Epub 2025 Mar 9.

Abstract

Non-volatile memory (NVM) based neuromorphic computing, which is inspired by the human brain, is a compelling paradigm in regard to building energy-efficient computing hardware that is tailored for artificial intelligence. However, the current state of the art NVMs are facing challenges with low operating voltages, energy efficiencies, and high densities in order to meet the new computing system beyond Moore's law. It is therefore necessary to develop novel hybrid materials with controlled compositional dynamics is crucial for initiating memristor devices capable of low-power operations. This study validates the effectiveness of Ag/FeW/Pt hybrid nanocomposite memristor devices, demonstrating superior performance including ultra-low voltage operation, high stability, reproducibility, exceptional endurance (10 cycles), environmental resilience, and low energy consumption of 0.072 pJ. Moreover, the memristor exhibits the ability to emulate essential biological synaptic mechanisms. The resistive switching phenomenon is primarily attributed to the controlled filament formation along unique heterophase grain boundaries. Furthermore, the hybrid nanocomposite synaptic device achieved an image recognition accuracy of 94.3% in Artificial Neural Network (ANN) simulations by using the Modified National Institute of Standards and Technology (MNIST) dataset. These results imply that the device's performance has promising implications for facilitating efficient neuromorphic architectures in the future.

摘要

受人类大脑启发的基于非易失性存储器(NVM)的神经形态计算,是构建适用于人工智能的节能计算硬件的一种引人注目的范式。然而,当前最先进的非易失性存储器在低工作电压、能量效率和高密度方面面临挑战,以满足超越摩尔定律的新计算系统的需求。因此,开发具有可控成分动力学的新型混合材料对于启动能够进行低功耗操作的忆阻器器件至关重要。本研究验证了Ag/FeW/Pt混合纳米复合忆阻器器件的有效性,展示了其卓越的性能,包括超低压操作、高稳定性、可重复性、出色的耐久性(10个循环)、环境适应性以及0.072 pJ的低能耗。此外,该忆阻器表现出模拟基本生物突触机制的能力。电阻开关现象主要归因于沿着独特异相晶界形成的可控细丝。此外,通过使用改进的美国国家标准与技术研究院(MNIST)数据集,混合纳米复合突触器件在人工神经网络(ANN)模拟中实现了94.3%的图像识别准确率。这些结果表明,该器件的性能对于未来推动高效神经形态架构具有广阔前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f282/12061252/5e4b9efa9a37/ADVS-12-2408133-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验