Suppr超能文献

近视性黄斑病变中的人工智能:使用多种成像方式进行识别、分类和监测的综合综述

Artificial Intelligence in Myopic Maculopathy: A Comprehensive Review of Identification, Classification, and Monitoring Using Diverse Imaging Modalities.

作者信息

Kapetanaki Maria Varvara, Maliagkani Eirini, Tyrlis Konstantinos, Georgalas Ilias

机构信息

1st University Department of Ophthalmology, "G. Gennimatas" General Hospital, National and Kapodistrian University of Athens, Athens, GRC.

出版信息

Cureus. 2025 Feb 7;17(2):e78685. doi: 10.7759/cureus.78685. eCollection 2025 Feb.

Abstract

This review investigates the usefulness and effectiveness of artificial intelligence (AI) tools in the detection of myopic maculopathy lesions using traditional imaging techniques like fundus photography and optical coherence tomography (OCT). The role of machine learning (ML) and deep learning (DL) algorithms in the diagnosis, classification, and follow-up of highly myopic cases is discussed. A comprehensive analysis of articles published between 2018 and 2024 from PubMed, Science Direct-Elsevier, and Google Scholar identified 13 studies directly relevant to the topic. The majority of the studies were conducted in China and focused on patients with myopic macular degeneration and high myopia. The most popular AI algorithms included ResNet-18, ResNet-50, ResNet-101, DeepLabv3+ and DarkNet-19, Efficient Net (B0/B7), VOLO-D2, Efficient Former, ALFA-Mix+, and XGBoost. Reported statistical metrics ranged from 80% to 97.3% for accuracy, 80% to 99.8% for the area under the curve (AUC), 83.0% to 97.0% for sensitivity, 63.0% to 97.21% for specificity, and 0.8358 to 0.9880 for the kappa value. The findings reveal that AI models can play a supportive role in disease diagnosis, achieving performance metrics comparable to those of general ophthalmologists. Furthermore, the utilization of larger datasets of OCT and fundus images improves generalizability and diagnostic accuracy. The integration of multimodal imaging techniques, such as OCT, color fundus photographs, and ultra-wide field photographs, enhances diagnostic clinical value and enables more comprehensive disease monitoring.

摘要

本综述研究了人工智能(AI)工具在使用眼底摄影和光学相干断层扫描(OCT)等传统成像技术检测近视性黄斑病变中的实用性和有效性。讨论了机器学习(ML)和深度学习(DL)算法在高度近视病例的诊断、分类和随访中的作用。对2018年至2024年期间发表于PubMed、Science Direct-Elsevier和谷歌学术的文章进行综合分析,确定了13项与该主题直接相关的研究。大多数研究在中国进行,主要关注近视性黄斑变性和高度近视患者。最常用的AI算法包括ResNet-18、ResNet-50、ResNet-101、DeepLabv3+、DarkNet-19、高效网络(B0/B7)、VOLO-D2、高效former、ALFA-Mix+和XGBoost。报告的统计指标中,准确率为80%至97.3%,曲线下面积(AUC)为80%至99.8%,灵敏度为83.0%至97.0%,特异性为63.0%至97.21%,kappa值为0.8358至0.9880。研究结果表明,AI模型在疾病诊断中可发挥辅助作用,其性能指标与普通眼科医生相当。此外,使用更大的OCT和眼底图像数据集可提高通用性和诊断准确性。整合多模态成像技术,如OCT、彩色眼底照片和超广角照片,可提高诊断的临床价值,并实现更全面的疾病监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1305/11890545/ff576f749ea5/cureus-0017-00000078685-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验