Suppr超能文献

基于扫频源光学相干断层扫描的深度卷积神经网络在近视性黄斑疾病检测中的准确性。

Accuracy of a deep convolutional neural network in the detection of myopic macular diseases using swept-source optical coherence tomography.

机构信息

Department of Ophthalmology, Tsukazaki Hospital, Himeji, Japan.

Department of Technology and Design Thinking for Medicine, Hiroshima University Graduate School, Hiroshima, Japan.

出版信息

PLoS One. 2020 Apr 16;15(4):e0227240. doi: 10.1371/journal.pone.0227240. eCollection 2020.

Abstract

This study examined and compared outcomes of deep learning (DL) in identifying swept-source optical coherence tomography (OCT) images without myopic macular lesions [i.e., no high myopia (nHM) vs. high myopia (HM)], and OCT images with myopic macular lesions [e.g., myopic choroidal neovascularization (mCNV) and retinoschisis (RS)]. A total of 910 SS-OCT images were included in the study as follows and analyzed by k-fold cross-validation (k = 5) using DL's renowned model, Visual Geometry Group-16: nHM, 146 images; HM, 531 images; mCNV, 122 images; and RS, 111 images (n = 910). The binary classification of OCT images with or without myopic macular lesions; the binary classification of HM images and images with myopic macular lesions (i.e., mCNV and RS images); and the ternary classification of HM, mCNV, and RS images were examined. Additionally, sensitivity, specificity, and the area under the curve (AUC) for the binary classifications as well as the correct answer rate for ternary classification were examined. The classification results of OCT images with or without myopic macular lesions were as follows: AUC, 0.970; sensitivity, 90.6%; specificity, 94.2%. The classification results of HM images and images with myopic macular lesions were as follows: AUC, 1.000; sensitivity, 100.0%; specificity, 100.0%. The correct answer rate in the ternary classification of HM images, mCNV images, and RS images were as follows: HM images, 96.5%; mCNV images, 77.9%; and RS, 67.6% with mean, 88.9%.Using noninvasive, easy-to-obtain swept-source OCT images, the DL model was able to classify OCT images without myopic macular lesions and OCT images with myopic macular lesions such as mCNV and RS with high accuracy. The study results suggest the possibility of conducting highly accurate screening of ocular diseases using artificial intelligence, which may improve the prevention of blindness and reduce workloads for ophthalmologists.

摘要

这项研究检查和比较了深度学习(DL)在识别无近视性黄斑病变(即无高度近视(nHM)与高度近视(HM))的扫频源光学相干断层扫描(OCT)图像和有近视性黄斑病变(如近视脉络膜新生血管(mCNV)和视网膜劈裂(RS))的OCT 图像方面的结果。共有 910 张 SS-OCT 图像被纳入研究,并使用 DL 著名的模型 Visual Geometry Group-16 通过 k 折交叉验证(k = 5)进行分析:nHM,146 张图像;HM,531 张图像;mCNV,122 张图像;RS,111 张图像(n = 910)。检查了 OCT 图像是否有或没有近视性黄斑病变的二分类;HM 图像和有近视性黄斑病变的图像(即 mCNV 和 RS 图像)的二分类;以及 HM、mCNV 和 RS 图像的三分类。此外,还检查了二分类的敏感性、特异性和曲线下面积(AUC),以及三分类的正确答案率。是否有近视性黄斑病变的 OCT 图像的分类结果如下:AUC,0.970;敏感性,90.6%;特异性,94.2%。HM 图像和有近视性黄斑病变的图像的分类结果如下:AUC,1.000;敏感性,100.0%;特异性,100.0%。HM 图像、mCNV 图像和 RS 图像的三分类正确答案率如下:HM 图像,96.5%;mCNV 图像,77.9%;RS,67.6%,平均为 88.9%。使用非侵入性、易于获取的扫频源 OCT 图像,DL 模型能够以高精度对无近视性黄斑病变的 OCT 图像和有近视性黄斑病变(如 mCNV 和 RS)的 OCT 图像进行分类。研究结果表明,使用人工智能进行高度准确的眼病筛查的可能性,这可能会提高预防失明的效果,并减轻眼科医生的工作量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aef/7161961/fd53911ef29f/pone.0227240.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验