Suppr超能文献

抑郁症诊断的多模态方法:基层医疗中机器学习算法开发的见解。

A multimodal approach to depression diagnosis: insights from machine learning algorithm development in primary care.

作者信息

Eder Julia, Dong Mark Sen, Wöhler Melanie, Simon Maria S, Glocker Catherine, Pfeiffer Lisa, Gaus Richard, Wolf Johannes, Mestan Kadir, Krcmar Helmut, Koutsouleris Nikolaos, Schneider Antonius, Gensichen Jochen, Musil Richard, Falkai Peter

机构信息

Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany.

Graduate Program "POKAL - Predictors and Outcomes in Primary Care" (DFG-GrK 2621), Munich, Germany.

出版信息

Eur Arch Psychiatry Clin Neurosci. 2025 Mar 10. doi: 10.1007/s00406-025-01990-5.

Abstract

General practitioners play an essential role in identifying depression and are often the first point of contact for patients. Current diagnostic tools, such as the Patient Health Questionnaire-9, provide initial screening but might lead to false positives. To address this, we developed a two-step machine learning model called Clinical 15, trained on a cohort of 581 participants using a nested cross-validation framework. The model integrates self-reported data from validated questionnaires within a study sample of patients presenting to general practitioners. Clinical 15 demonstrated a balanced accuracy of 88.2% and incorporates a traffic light system: green for healthy, red for depression, and yellow for uncertain cases. Gaussian mixture model clustering identified four depression subtypes, including an Immuno-Metabolic cluster characterized by obesity, low-grade inflammation, autonomic nervous system dysregulation, and reduced physical activity. The Clinical 15 algorithm identified all patients within the immuno-metabolic cluster as depressed, although 22.2% (30.8% across the whole dataset) were categorized as uncertain, leading to a yellow traffic light. The biological characterization of patients and monitoring of their clinical course may be used for differential risk stratification in the future. In conclusion, the Clinical 15 model provides a highly sensitive and specific tool to support GPs in diagnosing depression. Future algorithm improvements may integrate further biological markers and longitudinal data. The tool's clinical utility needs further evaluation through a randomized controlled trial, which is currently being planned. Additionally, assessing whether GPs actively integrate the algorithm's predictions into their diagnostic and treatment decisions will be critical for its practical adoption.

摘要

全科医生在识别抑郁症方面发挥着重要作用,通常是患者的第一接触点。当前的诊断工具,如患者健康问卷-9,可提供初步筛查,但可能会导致假阳性结果。为了解决这一问题,我们开发了一种名为Clinical 15的两步机器学习模型,该模型使用嵌套交叉验证框架在581名参与者的队列上进行训练。该模型将来自经过验证的问卷的自我报告数据整合到向全科医生就诊的患者研究样本中。Clinical 15的平衡准确率为88.2%,并采用了一个交通灯系统:绿色表示健康,红色表示抑郁症,黄色表示不确定病例。高斯混合模型聚类识别出四种抑郁症亚型,包括一个免疫代谢簇,其特征为肥胖、低度炎症、自主神经系统失调和身体活动减少。Clinical 15算法将免疫代谢簇中的所有患者识别为抑郁症患者,尽管其中22.2%(整个数据集为30.8%)被归类为不确定,导致显示黄色交通灯。患者的生物学特征及其临床病程监测未来可用于差异化风险分层。总之,Clinical 15模型提供了一种高度敏感和特异的工具,以支持全科医生诊断抑郁症。未来算法的改进可能会整合更多的生物学标志物和纵向数据。该工具的临床实用性需要通过一项随机对照试验进行进一步评估,目前正在计划中。此外,评估全科医生是否积极将算法的预测结果纳入其诊断和治疗决策对于该算法的实际应用至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验