Suppr超能文献

基于卷积块注意力门的Unet框架用于利用眼底图像进行微动脉瘤分割

Convolutional block attention gate-based Unet framework for microaneurysm segmentation using retinal fundus images.

作者信息

Vanaja C B, Prakasam P

机构信息

School of Electronics Engineering, Vellore Institute of Technology, Vellore, India.

出版信息

BMC Med Imaging. 2025 Mar 10;25(1):83. doi: 10.1186/s12880-025-01625-0.

Abstract

BACKGROUND

Diabetic retinopathy is a major cause of vision loss worldwide. This emphasizes the need for early identification and treatment to reduce blindness in a significant proportion of individuals. Microaneurysms, extremely small, circular red spots that appear in retinal fundus images, are one of the very first indications of diabetic retinopathy. Due to their small size and weak nature, microaneurysms are tough to identify manually. However, because of the complex background and varied lighting factors, it is challenging to recognize microaneurysms in fundus images automatically.

METHODS

To address the aforementioned issues, a unique approach for MA segmentation is proposed based on the CBAM-AG U-Net model, which incorporates Convolutional Block Attention Module (CBAM) and Attention Gate (AG) processes into the U-Net architecture to boost the extraction of features and segmentation accuracy. The proposed architecture takes advantage of the U-Net's encoder-decoder structure, which allows for perfect segmentation by gathering both high- and low-level information. The addition of CBAM introduces channel and spatial attention mechanisms, allowing the network to concentrate on the most useful elements while reducing the less relevant ones. Furthermore, the AGs enhance this process by selecting and displaying significant locations in the feature maps, which improves a model's capability to identify and segment the MAs.

RESULTS

The CBAM-AG-UNet model is trained on the IDRiD dataset. It achieved an Intersection over Union (IoU) of 0.758, a Dice Coefficient of 0.865, and an AUC-ROC of 0.996, outperforming existing approaches in segmentation accuracy. These findings illustrate the model's ability to effectively segment the MAs, which is critical for the timely detection and treatment of DR.

CONCLUSION

The proposed deep learning-based technique for automatic segmentation of micro-aneurysms in fundus photographs produces promising results for improving DR diagnosis and treatment. Furthermore, our method has the potential to simplify the process of delivering immediate and precise diagnoses.

摘要

背景

糖尿病视网膜病变是全球视力丧失的主要原因。这凸显了早期识别和治疗的必要性,以减少相当一部分人的失明情况。微动脉瘤是出现在视网膜眼底图像中的极小的圆形红点,是糖尿病视网膜病变最早的迹象之一。由于其尺寸小且特征微弱,微动脉瘤很难手动识别。然而,由于背景复杂和光照因素多样,在眼底图像中自动识别微动脉瘤具有挑战性。

方法

为了解决上述问题,提出了一种基于CBAM-AG U-Net模型的微动脉瘤分割独特方法,该模型将卷积块注意力模块(CBAM)和注意力门(AG)过程纳入U-Net架构,以提高特征提取和分割精度。所提出的架构利用了U-Net的编码器-解码器结构,通过收集高级和低级信息实现完美分割。CBAM的加入引入了通道和空间注意力机制,使网络能够专注于最有用的元素,同时减少不太相关的元素。此外,注意力门通过在特征图中选择和显示重要位置来增强这一过程,提高了模型识别和分割微动脉瘤的能力。

结果

CBAM-AG-UNet模型在IDRiD数据集上进行训练。它实现了0.758的交并比(IoU)、0.865的骰子系数和0.996的AUC-ROC,在分割精度方面优于现有方法。这些结果说明了该模型有效分割微动脉瘤的能力,这对于糖尿病视网膜病变的及时检测和治疗至关重要。

结论

所提出的基于深度学习的眼底照片中微动脉瘤自动分割技术在改善糖尿病视网膜病变的诊断和治疗方面产生了有前景的结果。此外,我们的方法有可能简化提供即时和精确诊断的过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a540/11895248/d9eba03bad8a/12880_2025_1625_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验