College of Information Science, Shanghai Ocean University, Shanghai, 201306, China.
The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 211166, China.
Sci Rep. 2022 Jan 19;12(1):950. doi: 10.1038/s41598-021-04750-2.
Diabetic retinopathy (DR) is a frequent vascular complication of diabetes mellitus and remains a leading cause of vision loss worldwide. Microaneurysm (MA) is usually the first symptom of DR that leads to blood leakage in the retina. Periodic detection of MAs will facilitate early detection of DR and reduction of vision injury. In this study, we proposed a novel model for the detection of MAs in fluorescein fundus angiography (FFA) images based on the improved FC-DenseNet, MAs-FC-DenseNet. FFA images were pre-processed by the Histogram Stretching and Gaussian Filtering algorithm to improve the quality of FFA images. Then, MA regions were detected by the improved FC-DenseNet. MAs-FC-DenseNet was compared against other FC-DenseNet models (FC-DenseNet56 and FC-DenseNet67) or the end-to-end models (DeeplabV3+ and PSPNet) to evaluate the detection performance of MAs. The result suggested that MAs-FC-DenseNet had higher values of evaluation metrics than other models, including pixel accuracy (PA), mean pixel accuracy (MPA), precision (Pre), recall (Re), F1-score (F1), and mean intersection over union (MIoU). Moreover, MA detection performance for MAs-FC-DenseNet was very close to the ground truth. Taken together, MAs-FC-DenseNet is a reliable model for rapid and accurate detection of MAs, which would be used for mass screening of DR patients.
糖尿病性视网膜病变 (DR) 是糖尿病常见的血管并发症,仍然是全球视力丧失的主要原因。微动脉瘤 (MA) 通常是导致视网膜出血的 DR 的第一个症状。定期检测 MA 将有助于早期发现 DR 并减少视力损伤。在这项研究中,我们提出了一种基于改进的 FC-DenseNet 的荧光素眼底血管造影 (FFA) 图像 MA 检测的新模型,称为 MA-FC-DenseNet。FFA 图像首先通过直方图拉伸和高斯滤波算法进行预处理,以提高 FFA 图像的质量。然后,使用改进的 FC-DenseNet 检测 MA 区域。将 MA-FC-DenseNet 与其他 FC-DenseNet 模型 (FC-DenseNet56 和 FC-DenseNet67) 或端到端模型 (DeeplabV3+ 和 PSPNet) 进行比较,以评估 MA 的检测性能。结果表明,MA-FC-DenseNet 的评估指标值高于其他模型,包括像素准确率 (PA)、平均像素准确率 (MPA)、精度 (Pre)、召回率 (Re)、F1 分数 (F1) 和平均交并比 (MIoU)。此外,MA-FC-DenseNet 的 MA 检测性能与真实值非常接近。总之,MA-FC-DenseNet 是一种快速准确检测 MA 的可靠模型,可用于 DR 患者的大规模筛查。