文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能模型利用心电图数据检测心力衰竭的疗效:一项系统评价和荟萃分析。

Efficacy of AI Models in Detecting Heart Failure Using ECG Data: A Systematic Review and Meta-Analysis.

作者信息

Khan Salman, Qayyum Komal, Qadeer Abdul, Khalid Maria, Anthony Somaan, Khan Wafa, Ghulam Moula, Jamil Zainab, Anthony Nouman

机构信息

Cardiology, Rehman Medical Institute, Peshawar, PAK.

Cardiology, Northwest General Hospital and Research Centre, Peshawar, PAK.

出版信息

Cureus. 2025 Feb 7;17(2):e78683. doi: 10.7759/cureus.78683. eCollection 2025 Feb.


DOI:10.7759/cureus.78683
PMID:40065863
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11891813/
Abstract

Heart failure (HF) is the most common cause of death worldwide, characterized by low ejection fraction, substantial mortality, morbidity, and poor quality of life. Recent advancements in artificial intelligence (AI) present a promising avenue for enhancing diagnostic precision, particularly in the analysis of electrocardiogram (ECG) data. This systematic review and meta-analysis aim to synthesize current evidence on the diagnostic performance of AI models in detecting HF using ECG data. PubMed and Google Scholar databases were systematically searched from inception up to July 1, 2023, to identify original articles assessing the predictive ability of AI in HF diagnosis. A total of 218,202 participants were included, with individual studies ranging from 59 to 110,000 participants. The pooled sensitivity, specificity, and diagnostic odds ratio (DOR) for the 13 included studies, with a 97.5% confidence interval (CI), were 0.93 (CI: 0.81-0.98), 0.95 (CI: 0.89-0.97), and 303.65 (CI: 53.12-1734), respectively. The sensitivity and specificity ranged from 0.12 to 1.00 and 0.66 to 1.00, respectively, indicating substantial variability in AI model performance, which may impact their generalizability and clinical reliability. AI-based algorithms utilizing ECG data are a reliable, accurate, and promising tool for the screening, detection, and monitoring of HF. However, further prospective studies are needed, particularly randomized controlled trials and large-scale longitudinal studies across diverse populations, to evaluate the long-term clinical impact, generalizability, and real-world applicability of these AI-driven diagnostic tools.

摘要

心力衰竭(HF)是全球最常见的死亡原因,其特征为射血分数低、死亡率高、发病率高且生活质量差。人工智能(AI)的最新进展为提高诊断准确性提供了一条有前景的途径,尤其是在心电图(ECG)数据分析方面。本系统评价和荟萃分析旨在综合当前关于使用ECG数据检测HF的AI模型诊断性能的证据。对PubMed和谷歌学术数据库从创建到2023年7月1日进行了系统检索,以识别评估AI在HF诊断中预测能力的原始文章。共纳入218,202名参与者,单个研究的参与者人数从59至110,000不等。纳入的13项研究的合并敏感性、特异性和诊断比值比(DOR)及其97.5%置信区间(CI)分别为0.93(CI:0.81 - 0.98)、0.95(CI:0.89 - 0.97)和303.65(CI:53.12 - 1734)。敏感性和特异性分别在0.12至1.00和0.66至1.00之间,表明AI模型性能存在很大差异,这可能会影响其可推广性和临床可靠性。基于AI的利用ECG数据的算法是用于HF筛查、检测和监测的可靠、准确且有前景的工具。然而,需要进一步的前瞻性研究,特别是跨不同人群的随机对照试验和大规模纵向研究,以评估这些由AI驱动的诊断工具的长期临床影响、可推广性和实际适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce61/11891813/61602550562e/cureus-0017-00000078683-i07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce61/11891813/1c2c2d09ea1b/cureus-0017-00000078683-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce61/11891813/00a3c77fd252/cureus-0017-00000078683-i02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce61/11891813/2448c7f638eb/cureus-0017-00000078683-i03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce61/11891813/a86066a9b20a/cureus-0017-00000078683-i04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce61/11891813/dce767015f88/cureus-0017-00000078683-i05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce61/11891813/d809d324a130/cureus-0017-00000078683-i06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce61/11891813/61602550562e/cureus-0017-00000078683-i07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce61/11891813/1c2c2d09ea1b/cureus-0017-00000078683-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce61/11891813/00a3c77fd252/cureus-0017-00000078683-i02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce61/11891813/2448c7f638eb/cureus-0017-00000078683-i03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce61/11891813/a86066a9b20a/cureus-0017-00000078683-i04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce61/11891813/dce767015f88/cureus-0017-00000078683-i05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce61/11891813/d809d324a130/cureus-0017-00000078683-i06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce61/11891813/61602550562e/cureus-0017-00000078683-i07.jpg

相似文献

[1]
Efficacy of AI Models in Detecting Heart Failure Using ECG Data: A Systematic Review and Meta-Analysis.

Cureus. 2025-2-7

[2]
Identifying Heart Failure in ECG Data With Artificial Intelligence-A Meta-Analysis.

Front Digit Health. 2021-2-25

[3]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[4]
Electrocardiogram-based artificial intelligence for the diagnosis of heart failure: a systematic review and meta-analysis.

J Geriatr Cardiol. 2022-12-28

[5]
Diagnostic accuracy of artificial-intelligence-based electrocardiogram algorithm to estimate heart failure with reduced ejection fraction: A systematic review and meta-analysis.

Curr Probl Cardiol. 2025-4

[6]
Artificial intelligence for osteoporosis detection on panoramic radiography: A systematic review and meta analysis.

J Dent. 2025-5

[7]
Community-based participatory research application of an artificial intelligence-enhanced electrocardiogram for cardiovascular disease screening: A FAITH! Trial ancillary study.

Am J Prev Cardiol. 2022-11-13

[8]
Meta-Analysis of the Performance of AI-Driven ECG Interpretation in the Diagnosis of Valvular Heart Diseases.

Am J Cardiol. 2024-2-15

[9]
Artificial intelligence for detecting periapical radiolucencies: A systematic review and meta-analysis.

J Dent. 2024-8

[10]
Artificial Intelligence and Its Role in Diagnosing Heart Failure: A Narrative Review.

Cureus. 2024-5-5

本文引用的文献

[1]
Automated detection of low ejection fraction from a one-lead electrocardiogram: application of an AI algorithm to an electrocardiogram-enabled Digital Stethoscope.

Eur Heart J Digit Health. 2022-5-23

[2]
Electrocardiogram-based artificial intelligence for the diagnosis of heart failure: a systematic review and meta-analysis.

J Geriatr Cardiol. 2022-12-28

[3]
Artificial intelligence-augmented electrocardiography for left ventricular systolic dysfunction in patients undergoing high-sensitivity cardiac troponin T.

Eur Heart J Acute Cardiovasc Care. 2023-2-9

[4]
Pragmatic screening for heart failure in the general population using an electrocardiogram-based neural network.

ESC Heart Fail. 2023-4

[5]
Physicians and Machine-Learning Algorithm Performance in Predicting Left-Ventricular Systolic Dysfunction from a Standard 12-Lead-Electrocardiogram.

J Clin Med. 2022-11-15

[6]
Artificial intelligence enabled ECG screening for left ventricular systolic dysfunction: a systematic review.

Heart Fail Rev. 2023-3

[7]
Real-world performance, long-term efficacy, and absence of bias in the artificial intelligence enhanced electrocardiogram to detect left ventricular systolic dysfunction.

Eur Heart J Digit Health. 2022-6

[8]
2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.

Circulation. 2022-5-3

[9]
Artificial Intelligence-Enabled Electrocardiography Predicts Left Ventricular Dysfunction and Future Cardiovascular Outcomes: A Retrospective Analysis.

J Pers Med. 2022-3-13

[10]
Artificial Intelligence-Enhanced Smartwatch ECG for Heart Failure-Reduced Ejection Fraction Detection by Generating 12-Lead ECG.

Diagnostics (Basel). 2022-3-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索