Suppr超能文献

用于评估脑小血管病患者认知障碍的放射组学和深度迁移学习模型的开发与验证

Development and validation of radiomics and deep transfer learning models to assess cognitive impairment in patients with cerebral small vessel disease.

作者信息

Zheng Wei, Wu Qi, Mu Ronghua, Kuang Jia, Yang Peng, Lv Jian, Huang Bingqin, Li Xin, Liu Fuzhen, Song Zhixuan, Qin Xiaoyan, Zhu Xiqi

机构信息

Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, 541004 Guilin, China.

School of Laboratory Medicine, Youjiang Medical University for Nationalities, 533000 Baise, China; Department of Radiology, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000 Baise, China.

出版信息

Neuroscience. 2025 Apr 19;572:145-154. doi: 10.1016/j.neuroscience.2025.03.012. Epub 2025 Mar 9.

Abstract

Cognitive impairment in cerebral small vessel disease (CSVD) progresses subtly but carries significant clinical consequences, necessitating effective diagnostic tools. This study developed and validated predictive models for CSVD-related cognitive impairment using deep transfer learning (DTL) and radiomics features extracted from hippocampal 3D T1-weighted MRI. A total of 145 CSVD patients and 99 control subjects were enrolled in the study. We employed an automated algorithm to segment the hippocampus from 3D T1 images. Pre-trained deep learning networks were utilized to extract DTL features. Feature selection was performed using the Spearman rank correlation test and least absolute shrinkage and selection operator (LASSO) regression. Machine learning classification models, including Random Forest and Naive Bayes, were trained on the selected features. The predictive performance of these models was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) and decision curve analysis (DCA). The DTL model based on the ResNet101_32x8d network exhibited superior performance compared to other DTL models and the radiomics model, achieving an AUC of 0.847 (95 % CI: 0.691-1.000) and accuracy of 0.760. Furthermore, a combined model integrating ResNet101_32x8d and radiomic features further improved performance (AUC = 0.873, accuracy = 0.800), although the Delong test did not show statistical significance between models. These findings highlight that comprehensive data encompassing radiomics and DTL features showcase a robust predictive capability in distinguishing CSVD patients with cognitive impairment, offering insights for clinical applications despite limitations in sample size.

摘要

脑小血管病(CSVD)中的认知障碍进展较为隐匿,但会产生重大临床后果,因此需要有效的诊断工具。本研究利用深度迁移学习(DTL)和从海马体三维T1加权磁共振成像(MRI)中提取的放射组学特征,开发并验证了CSVD相关认知障碍的预测模型。共有145例CSVD患者和99名对照受试者纳入本研究。我们采用自动算法从三维T1图像中分割出海马体。利用预训练的深度学习网络提取DTL特征。使用Spearman等级相关检验和最小绝对收缩和选择算子(LASSO)回归进行特征选择。基于所选特征训练了包括随机森林和朴素贝叶斯在内的机器学习分类模型。使用受试者操作特征(ROC)曲线下面积(AUC)和决策曲线分析(DCA)评估这些模型的预测性能。与其他DTL模型和放射组学模型相比,基于ResNet101_32x8d网络的DTL模型表现更优,AUC为0.847(95%CI:0.691 - 1.000),准确率为0.760。此外,整合ResNet101_32x8d和放射组学特征的联合模型进一步提高了性能(AUC = 0.873,准确率 = 0.800),尽管Delong检验显示模型之间无统计学意义。这些发现突出表明,包含放射组学和DTL特征的综合数据在区分有认知障碍的CSVD患者方面具有强大的预测能力,尽管样本量有限,但仍为临床应用提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验