Wang Xianhong, Bi Qiu, Deng Cheng, Wang Yaoxin, Miao Yunbo, Kong Ruize, Chen Jie, Li Chenrong, Liu Xiulan, Gong Xiarong, Zhang Ya, Bi Guoli
The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
Department of MRI, the First People's Hospital of Yunnan Province, Kunming, China.
Abdom Radiol (NY). 2025 Mar;50(3):1414-1425. doi: 10.1007/s00261-024-04577-1. Epub 2024 Sep 14.
To develop and compare various preoperative cervical stromal invasion (CSI) prediction models, including radiomics, three-dimensional (3D) deep transfer learning (DTL), and integrated models, using single-sequence and multiparametric MRI.
Data from 466 early-stage endometrial carcinoma (EC) patients from three centers were collected. Radiomics models were constructed based on T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) mapping, contrast-enhanced T1-weighted imaging (CE-T1WI), and four combined sequences as well as 3D DTL models. Two integrated models were created using ensemble and stacking algorithms based on optimal radiomics and DTL models. Model performance and clinical benefits were assessed using area under the curve (AUC), decision curve analysis (DCA), net reclassification index (NRI), integrated discrimination index (IDI), and the Delong test for model comparisons.
Multiparametric MRI models were superior to single-sequence models for radiomics or DTL models. Ensemble and stacking integrated models displayed excellent performance. The stacking model had the highest average AUC (0.908) and accuracy (0.883) in external validation groups 1 and 2 (AUC = 0.965 and 0.851, respectively) and emerged as the best predictive model for CSI. All models significantly outperformed the radiologist (P < 0.05). In terms of net benefits, all models demonstrated favorable outcomes in DCA, NRI, and IDI, with the stacking model yielding the highest net benefit.
Multiparametric MRI-based radiomics combined with 3D DTL can be used to noninvasively predict CSI in EC patients with greater diagnostic accuracy than the radiologist. Stacking integrated models showed significant potential utility in predicting CSI. Which helps to provide new treatment strategy for clinicians to treat early-stage EC patients.
使用单序列和多参数MRI开发并比较各种术前宫颈基质浸润(CSI)预测模型,包括放射组学、三维(3D)深度迁移学习(DTL)和整合模型。
收集来自三个中心的466例早期子宫内膜癌(EC)患者的数据。基于T2加权成像(T2WI)、扩散加权成像(DWI)、表观扩散系数(ADC)图、对比增强T1加权成像(CE-T1WI)、四个联合序列以及3D DTL模型构建放射组学模型。使用集成和堆叠算法,基于最佳放射组学和DTL模型创建两个整合模型。使用曲线下面积(AUC)、决策曲线分析(DCA)、净重新分类指数(NRI)、综合鉴别指数(IDI)以及用于模型比较的德龙检验评估模型性能和临床益处。
对于放射组学或DTL模型,多参数MRI模型优于单序列模型。集成和堆叠整合模型表现出色。堆叠模型在外部验证组1和组2中具有最高的平均AUC(0.908)和准确率(0.883)(AUC分别为0.965和0.851),并成为CSI的最佳预测模型。所有模型的表现均显著优于放射科医生(P<0.05)。在净效益方面,所有模型在DCA、NRI和IDI中均显示出良好的结果,堆叠模型产生的净效益最高。
基于多参数MRI的放射组学结合3D DTL可用于无创预测EC患者的CSI,诊断准确性高于放射科医生。堆叠整合模型在预测CSI方面显示出显著的潜在效用。这有助于为临床医生治疗早期EC患者提供新的治疗策略。