Suppr超能文献

提高基于铌钨氧化物的锂离子电池的快充能力。

Improving the fast-charging capability of NbWO-based Li-ion batteries.

作者信息

Guo Yaqing, Guo Chi, Li Penghui, Song Wenjun, Huang Weiyuan, Yan Junxin, Liao Xiaobin, He Kun, Sha Wuxin, Zeng Xuemei, Tang Xinyue, Ren QingQing, Wang Shun, Amine Khalil, Nie Anmin, Liu Tongchao, Yuan Yifei

机构信息

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China.

Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, China.

出版信息

Nat Commun. 2025 Mar 11;16(1):2441. doi: 10.1038/s41467-025-57576-1.

Abstract

The discovery of Nb-W-O materials years ago marks the milestone of charging a lithium-ion battery in minutes. Nevertheless, for many applications, charging lithium-ion battery within one minute is urgently demanded, the bottleneck of which largely lies in the lack of fundamental understanding of Li storage mechanisms in these materials. Herein, by visualizing Li intercalated into representative NbWO, we find that the fast-charging nature of such material originates from an interesting rate-dependent lattice relaxation process associated with the Jahn-Teller effect. Furthermore, in situ electron microscopy further reveals a directional, [010]-preferred Li transport mechanism in NbWO crystals being the "bottleneck" toward fast charging that deprives the entry of any desolvated Li through the prevailing non-(010) surfaces. Hence, we propose a machine learning-assisted interface engineering strategy to swiftly collect desolvated Li and relocate them to (010) surfaces for their fast intercalation. As a result, a capacity of ≈ 116 mAh g (68.5% of the theoretical capacity) at 80 C (45 s) is achieved when coupled with a Li negative electrode.

摘要

多年前发现的铌钨氧化物材料标志着锂离子电池在数分钟内充电的里程碑。然而,对于许多应用而言,迫切需要在一分钟内为锂离子电池充电,其瓶颈很大程度上在于对这些材料中锂存储机制缺乏基本了解。在此,通过可视化锂嵌入代表性的铌酸钨中,我们发现这种材料的快速充电特性源于与 Jahn-Teller 效应相关的有趣的速率依赖性晶格弛豫过程。此外,原位电子显微镜进一步揭示了铌酸钨晶体中一种定向的、[010] 优先的锂传输机制是快速充电的“瓶颈”,这使得任何去溶剂化的锂都无法通过主要的非 (010) 表面进入。因此,我们提出了一种机器学习辅助的界面工程策略,以迅速收集去溶剂化的锂并将它们重新定位到 (010) 表面以便快速嵌入。结果,当与锂负极耦合时,在 80℃(45 秒)下实现了约 116 mAh g 的容量(理论容量的 68.5%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f3b/11897329/c8117bfece4a/41467_2025_57576_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验