Suppr超能文献

开发并验证机器学习模型,以预测认知障碍老年人出现抑郁症状的风险。

Develop and validate machine learning models to predict the risk of depressive symptoms in older adults with cognitive impairment.

作者信息

Li Enguang, Ai Fangzhu, Tian Qingyan, Yang Haocheng, Tang Ping, Guo Botang

机构信息

School of Nursing, Jinzhou Medical University, Liaoning Province, Jinzhou, 121000, China.

Department of General Practice, Shenzhen Luohu People's Hospital(Luohu Clinical College of Shantou University Medical College), YouYi Road 47, Shenzhen, 518000, Guangdong, People's Republic of China.

出版信息

BMC Psychiatry. 2025 Mar 11;25(1):219. doi: 10.1186/s12888-025-06657-y.

Abstract

BACKGROUND

Cognitive impairment and depressive symptoms are prevalent and closely interrelated mental health issues in the elderly. Traditional methods for identifying depressive symptoms in this population often lack effectiveness. Machine learning provides a promising alternative for developing predictive models that can facilitate early identification and intervention.

METHODS

This study utilized data from 945 participants aged 60 years and older with cognitive impairment, sourced from National Health and Nutrition Examination Surveys (2011-2014). Depressive symptoms were assessed using the Patient Health Questionnaire-9. Lasso regression was applied for feature selection, ensuring consistency across models. Several machine learning models, including XGBoost, Logistic Regression, Random Forest, and SVM, were trained and evaluated. Model performance was assessed using accuracy, precision, recall, F1 score, and AUC.

RESULTS

The incidence of depressive symptoms in older adults with cognitive impairment was 14.07%. Key predictors identified by lasso included general health, memory difficulties, and age, among others. Notably, general health emerged as a novel and significant predictor in this population, underscoring the interplay between physical and mental health. XGBoost was the best model for comprehensively comparing discrimination, calibration, and clinical utility.

CONCLUSIONS

Machine learning models, particularly XGBoost, effectively predict depressive symptoms in cognitively impaired older adults. The findings highlight the importance of physical, cognitive, and social factors in depressive symptoms risk. These models have the potential to assist in early screening and intervention, improving patient outcomes. Future research should explore ways to enhance model generalizability, including the use of clinically diagnosed depressive symptoms data and alternative feature selection approaches.

摘要

背景

认知障碍和抑郁症状是老年人中普遍存在且密切相关的心理健康问题。传统的识别该人群抑郁症状的方法往往缺乏有效性。机器学习为开发预测模型提供了一个有前景的替代方案,该模型可以促进早期识别和干预。

方法

本研究使用了来自国家健康和营养检查调查(2011 - 2014年)的945名60岁及以上有认知障碍参与者的数据。使用患者健康问卷 - 9评估抑郁症状。应用套索回归进行特征选择,以确保模型间的一致性。训练并评估了几种机器学习模型,包括XGBoost、逻辑回归、随机森林和支持向量机。使用准确率、精确率、召回率、F1分数和AUC评估模型性能。

结果

有认知障碍的老年人中抑郁症状的发生率为14.07%。套索回归确定的关键预测因素包括总体健康状况、记忆困难和年龄等。值得注意的是,总体健康状况在该人群中成为一个新的重要预测因素,突显了身心健康之间的相互作用。XGBoost是全面比较区分度、校准度和临床实用性的最佳模型。

结论

机器学习模型,特别是XGBoost,能有效预测认知障碍老年人的抑郁症状。研究结果突出了身体、认知和社会因素在抑郁症状风险中的重要性。这些模型有潜力协助早期筛查和干预,改善患者预后。未来的研究应探索提高模型通用性的方法,包括使用临床诊断的抑郁症状数据和替代特征选择方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c847/11895390/9bf8a35d9c72/12888_2025_6657_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验