Suppr超能文献

通过机器学习和实验分析鉴定动脉粥样硬化中与脂质代谢相关的免疫标志物

Identification of lipid metabolism related immune markers in atherosclerosis through machine learning and experimental analysis.

作者信息

Chen Hang, Wu Biao, Guan Kunyu, Chen Liang, Chai Kangjie, Ying Maoji, Li Dazhi, Zhao Weicheng

机构信息

Department of Thyroid Breast Vascular Surgery, Banan Hospital of Chongqing Medical University, Chongqing, China.

Department of Vascular Surgery, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China.

出版信息

Front Immunol. 2025 Feb 25;16:1549150. doi: 10.3389/fimmu.2025.1549150. eCollection 2025.

Abstract

BACKGROUND

Atherosclerosis is a significant contributor to cardiovascular disease, and conventional diagnostic methods frequently fall short in the timely and accurate detection of early-stage atherosclerosis. Abnormal lipid metabolism plays a critical role in the development of atherosclerosis. Consequently, the identification of new diagnostic markers is essential for the precise diagnosis of this condition.

METHOD

The datasets related to atherosclerosis utilized in this research were obtained from the GEO database (GSE2470, GSE24495, GSE100927 and GSE43292). The ssGSEA technique was first utilized to assess lipid metabolism scores in samples affected by atherosclerosis, thereby aiding in the discovery of important regulatory genes linked to lipid metabolism via WGCNA. Following this, differential expression analysis and functional evaluations were carried out, after which various machine learning approaches were employed to determine significant diagnostic genes for atherosclerosis. A diagnostic model was then developed and validated through several machine learning algorithms. Furthermore, molecular docking studies were conducted to analyze the binding affinity of these key markers with therapeutic agents for atherosclerosis. The ssGSEA technique was also used to measure immune cell scores in atherosclerotic samples, aiding the exploration of the connection between key diagnostic markers and immune cells. Finally, the expression variations of the identified pivotal genes were confirmed through experimental validation.

RESULT

WGCNA identified 302 lipid metabolism-related genes in atherosclerotic samples, and functional analysis revealed that these genes are associated with multiple immune pathways. Through further differential analysis and screening using machine learning algorithms, APLNR, PCDH12, PODXL, SLC40A1, TM4SF18, and TNFRSF25 were identified as key diagnostic genes for atherosclerosis. The diagnostic model we constructed was confirmed to predict the occurrence of atherosclerosis with high accuracy, and molecular docking studies indicated that these six key diagnostic genes have potential as drug targets. Additionally, the ssGSEA algorithm further validated the association of these diagnostic genes with various immune cells. Finally, the expression levels of these six genes were experimentally confirmed.

CONCLUSION

Our study introduces novel lipid metabolism-related diagnostic markers for atherosclerosis and emphasizes their potential as immune-related drug targets. This research provides a valuable approach for the predictive diagnosis and targeted therapy of atherosclerosis.

摘要

背景

动脉粥样硬化是心血管疾病的重要成因,传统诊断方法在早期动脉粥样硬化的及时、准确检测方面常常不足。脂质代谢异常在动脉粥样硬化的发展中起关键作用。因此,识别新的诊断标志物对于该病症的精确诊断至关重要。

方法

本研究中使用的与动脉粥样硬化相关的数据集取自基因表达综合数据库(GEO数据库,GSE2470、GSE24495、GSE100927和GSE43292)。首先利用单样本基因集富集分析(ssGSEA)技术评估动脉粥样硬化样本中的脂质代谢分数,从而通过加权基因共表达网络分析(WGCNA)辅助发现与脂质代谢相关的重要调控基因。在此之后,进行差异表达分析和功能评估,然后采用各种机器学习方法确定动脉粥样硬化的显著诊断基因。接着通过多种机器学习算法开发并验证了一个诊断模型。此外,进行分子对接研究以分析这些关键标志物与动脉粥样硬化治疗药物的结合亲和力。ssGSEA技术还用于测量动脉粥样硬化样本中的免疫细胞分数,有助于探索关键诊断标志物与免疫细胞之间的联系。最后,通过实验验证确定的关键基因的表达变化。

结果

WGCNA在动脉粥样硬化样本中识别出302个与脂质代谢相关的基因,功能分析表明这些基因与多种免疫途径相关。通过使用机器学习算法进行进一步的差异分析和筛选,血管生成素样受体(APLNR)、原钙黏蛋白12(PCDH12)、podocalyxin(PODXL)、溶质载体家族40成员1(SLC40A1)、跨膜4超家族成员18(TM4SF18)和肿瘤坏死因子受体超家族成员25(TNFRSF25)被确定为动脉粥样硬化的关键诊断基因。我们构建的诊断模型被证实能够高精度地预测动脉粥样硬化的发生,分子对接研究表明这六个关键诊断基因具有作为药物靶点的潜力。此外,ssGSEA算法进一步验证了这些诊断基因与各种免疫细胞的关联。最后,通过实验证实了这六个基因的表达水平。

结论

我们的研究引入了与脂质代谢相关的新型动脉粥样硬化诊断标志物,并强调了它们作为免疫相关药物靶点的潜力。本研究为动脉粥样硬化的预测诊断和靶向治疗提供了一种有价值的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6970/11893410/dc04328a59f4/fimmu-16-1549150-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验