Suppr超能文献

网络药理学结合分子对接及醋酸哥伦比亚内酯治疗卵巢癌作用机制的实验验证

Network pharmacology combined with molecular docking and experimental validation of the mechanism of action of columbianetin acetate in the treatment of ovarian cancer.

作者信息

Hu Mengling, Wang Luyao, Zhang Feiyue, Xie Yiluo, Zhang Tingting, Liu Hongli, Li Zhenghong, Zhang Jing

机构信息

Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China.

Department of Clinical Medicine, Bengbu Medical University, Bengbu, China.

出版信息

Front Oncol. 2025 Feb 25;15:1515976. doi: 10.3389/fonc.2025.1515976. eCollection 2025.

Abstract

BACKGROUND

Ovarian cancer is the most prevalent malignant tumor of the female reproductive system and has the highest mortality rate among gynecological cancers. Columbianetin acetate (CE) is one of the active ingredients of Angelica sinensis, which has good antifungal and anti-inflammatory activities. However, its potential mechanism of action in ovarian cancer remains unclear. This study used network pharmacology and molecular docking technology to investigate the molecular mechanism and material basis of CE in the treatment of ovarian cancer, and further verified by experiments.

METHODS

Relevant targets for CE were obtained from TCMSP and SwissTargetPrediction databases. OMIM, GeneCards and DisGeNET databases were applied to screen ovarian cancer-related targets. The STRING database to obtain protein-protein interaction (PPI) network. Then key targets were obtained using Cytoscape software, followed by expression, survival and ROC diagnostic analyses of core genes using R software. GO and KEGG enrichment analyses were performed using the DAVID database. Binding ability of CE to core targets was assessed by molecular docking. KEGG sites were used to predict core gene-related pathways. Subsequently, cellular experiments were performed to further investigate the molecular mechanism of CE treatment for ovarian cancer.

RESULTS

A total of 55 CE-ovarian cancer interaction targets were identified using network pharmacology techniques. Among these, eight key targets -ESR1, GSK3B, JAK2, MAPK1, MDM2, PARP1, PIK3CA, and SRC-were screened using Cytoscape software. Core genes ESR1, GSK3B and JAK2 were obtained based on expression, prognostic and diagnostic values using R software. GO and KEGG enrichment analyses indicated that CE treatment of ovarian cancer might be related to PI3K/Akt signaling pathway, MAPK signaling pathway, ErbB signaling pathway and Ras signaling pathway. The molecular docking results showed that CE had good binding ability with core targets ESR1, GSK3B and JAK2. The results of cellular experiments indicated that CE may inhibit the proliferation and metastasis of ovarian cancer and promote apoptosis by inhibiting the PI3K/AKT/GSK3B pathway.

CONCLUSIONS

Based on the network pharmacology approach, we predicted the potential mechanism of CE for the treatment of ovarian cancer, which provided a new idea for further research on its pharmacological mechanism.

摘要

背景

卵巢癌是女性生殖系统中最常见的恶性肿瘤,在妇科癌症中死亡率最高。醋酸欧前胡素(CE)是当归的活性成分之一,具有良好的抗真菌和抗炎活性。然而,其在卵巢癌中的潜在作用机制仍不清楚。本研究采用网络药理学和分子对接技术探讨CE治疗卵巢癌的分子机制和物质基础,并通过实验进一步验证。

方法

从中药系统药理学数据库(TCMSP)和瑞士药物靶点预测数据库中获取CE的相关靶点。应用在线孟德尔人类遗传数据库(OMIM)、基因卡片数据库(GeneCards)和疾病基因数据库(DisGeNET)筛选卵巢癌相关靶点。利用STRING数据库获得蛋白质-蛋白质相互作用(PPI)网络。然后使用Cytoscape软件获取关键靶点,随后使用R软件对核心基因进行表达、生存和ROC诊断分析。使用DAVID数据库进行基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析。通过分子对接评估CE与核心靶点的结合能力。利用KEGG位点预测核心基因相关通路。随后,进行细胞实验以进一步研究CE治疗卵巢癌的分子机制。

结果

利用网络药理学技术共鉴定出55个CE-卵巢癌相互作用靶点。其中,使用Cytoscape软件筛选出8个关键靶点——雌激素受体1(ESR1)、糖原合成酶激酶3β(GSK3B)、Janus激酶2(JAK2)、丝裂原活化蛋白激酶1(MAPK1)、小鼠双微体2(MDM2)、聚(ADP-核糖)聚合酶1(PARP1)、磷脂酰肌醇-3-激酶催化亚基α(PIK3CA)和原癌基因酪氨酸蛋白激酶(SRC)。基于R软件的表达、预后和诊断价值获得核心基因ESR1、GSK3B和JAK2。GO和KEGG富集分析表明,CE治疗卵巢癌可能与磷脂酰肌醇-3-激酶/蛋白激酶B(PI3K/Akt)信号通路、丝裂原活化蛋白激酶(MAPK)信号通路、表皮生长因子受体(ErbB)信号通路和Ras信号通路有关。分子对接结果表明,CE与核心靶点ESR1、GSK3B和JAK2具有良好的结合能力。细胞实验结果表明,CE可能通过抑制PI3K/AKT/GSK3B通路抑制卵巢癌的增殖和转移并促进细胞凋亡。

结论

基于网络药理学方法,我们预测了CE治疗卵巢癌的潜在机制,为进一步研究其药理机制提供了新思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cba3/11894577/3b09a48dd59e/fonc-15-1515976-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验