Suppr超能文献

用于受脑启发的神经形态计算和感知应用的电解质门控晶体管:综述

Electrolyte Gated Transistors for Brain Inspired Neuromorphic Computing and Perception Applications: A Review.

作者信息

Wang Weisheng, Zhu Liqiang

机构信息

School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.

出版信息

Nanomaterials (Basel). 2025 Feb 24;15(5):348. doi: 10.3390/nano15050348.

Abstract

Emerging neuromorphic computing offers a promising and energy-efficient approach to developing advanced intelligent systems by mimicking the information processing modes of the human brain. Moreover, inspired by the high parallelism, fault tolerance, adaptability, and low power consumption of brain perceptual systems, replicating these efficient and intelligent systems at a hardware level will endow artificial intelligence (AI) and neuromorphic engineering with unparalleled appeal. Therefore, construction of neuromorphic devices that can simulate neural and synaptic behaviors are crucial for achieving intelligent perception and neuromorphic computing. As novel memristive devices, electrolyte-gated transistors (EGTs) stand out among numerous neuromorphic devices due to their unique interfacial ion coupling effects. Thus, the present review discusses the applications of the EGTs in neuromorphic electronics. First, operational modes of EGTs are discussed briefly. Second, the advancements of EGTs in mimicking biological synapses/neurons and neuromorphic computing functions are introduced. Next, applications of artificial perceptual systems utilizing EGTs are discussed. Finally, a brief outlook on future developments and challenges is presented.

摘要

新兴的神经形态计算通过模仿人类大脑的信息处理模式,为开发先进的智能系统提供了一种有前途且节能的方法。此外,受大脑感知系统的高并行性、容错性、适应性和低功耗的启发,在硬件层面复制这些高效且智能的系统将赋予人工智能(AI)和神经形态工程无与伦比的吸引力。因此,构建能够模拟神经和突触行为的神经形态器件对于实现智能感知和神经形态计算至关重要。作为新型忆阻器件,电解质门控晶体管(EGT)因其独特的界面离子耦合效应,在众多神经形态器件中脱颖而出。因此,本综述讨论了EGT在神经形态电子学中的应用。首先,简要讨论了EGT的工作模式。其次,介绍了EGT在模仿生物突触/神经元和神经形态计算功能方面的进展。接下来,讨论了利用EGT的人工感知系统的应用。最后,对未来的发展和挑战进行了简要展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/11901459/6e95da694fda/nanomaterials-15-00348-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验