Suppr超能文献

过冷液体中激发的作用:密度、几何结构与弛豫动力学

The role of excitations in supercooled liquids: Density, geometry, and relaxation dynamics.

作者信息

Ji Wencheng, Pica Ciamarra Massimo, Wyart Matthieu

机构信息

Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel.

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.

出版信息

Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2416800122. doi: 10.1073/pnas.2416800122. Epub 2025 Mar 12.

Abstract

Low-energy excitations play a key role in all condensed-matter systems, yet there is limited understanding of their nature in glasses, where they correspond to local rearrangements of groups of particles. Here, we introduce an algorithm to systematically uncover these excitations up to the activation energy scale relevant to structural relaxation. We use it in a model system to measure the density of states on a scale never achieved before, confirming that this quantity shifts to higher energy under cooling, precisely as the activation energy does. Second, we show that the excitations' energetic and spatial features allow one to predict with great accuracy the dynamic propensity, i.e., the location of future relaxation dynamics. Finally, we find that excitations have a primary field whose properties, including the displacement of the most mobile particle, scale as a power-law of their activation energy and are independent of temperature. Additionally, they exhibit an outer deformation field that depends on the material's stability and, therefore, on temperature. We build a scaling description of these findings. Overall, our analysis supports that excitations play a crucial role in regulating relaxation dynamics near the glass transition, effectively suppressing the transition to dynamical arrest predicted by mean-field theories while also being strongly influenced by it.

摘要

低能激发在所有凝聚态系统中都起着关键作用,然而在玻璃态中,人们对其本质的理解却很有限,在玻璃态中,低能激发对应于粒子群的局部重排。在此,我们引入一种算法,以系统地揭示这些激发,直至与结构弛豫相关的活化能尺度。我们在一个模型系统中使用该算法,在前所未有的尺度上测量态密度,证实该量在冷却时会向更高能量移动,这与活化能的变化情况完全一致。其次,我们表明,激发的能量和空间特征使人们能够极其准确地预测动态倾向,即未来弛豫动力学的位置。最后,我们发现激发具有一个主场,其性质,包括最易移动粒子的位移,按其活化能的幂律缩放,且与温度无关。此外,它们还表现出一个外部形变场,该场取决于材料的稳定性,因此也取决于温度。我们对这些发现构建了一个标度描述。总体而言,我们的分析支持这样的观点:激发在调节玻璃化转变附近的弛豫动力学中起着至关重要的作用,有效地抑制了平均场理论所预测的向动力学阻滞的转变,同时又受到其强烈影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f367/11929468/987e9fd6cb53/pnas.2416800122fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验