Suppr超能文献

骨髓增生异常综合征中CD34造血干细胞差异基因表达的研究与分析

Research and analysis of differential gene expression in CD34 hematopoietic stem cells in myelodysplastic syndromes.

作者信息

Wang Min-Xiao, Liao Chang-Sheng, Wei Xue-Qin, Xie Yu-Qin, Han Peng-Fei, Yu Yan-Hui

机构信息

Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, Shanxi, China.

Department of Graduate School, Graduate Student Department of Changzhi Medical College, Changzhi, Shanxi, China.

出版信息

PLoS One. 2025 Mar 12;20(3):e0315408. doi: 10.1371/journal.pone.0315408. eCollection 2025.

Abstract

OBJECTIVE

This study aims to investigate and analyze the differentially expressed genes (DEGs) in CD34 + hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) through bioinformatics analysis, with the ultimate goal of uncovering the potential molecular mechanisms underlying pathogenesis of MDS. The findings of this study are expected to provide novel insights into clinical treatment strategies for MDS.

METHODS

Initially, we downloaded three datasets, GSE81173, GSE4619, and GSE58831, from the public Gene Expression Omnibus (GEO) database as our training sets, and selected the GSE19429 dataset as the validation set. To ensure data consistency and comparability, we standardized the training sets and removed batch effects using the ComBat algorithm, thereby integrating them into a unified gene expression dataset. Subsequently, we conducted differential expression analysis to identify genes with significant changes in expression levels across different disease states. In order to enhance prediction accuracy, we incorporated six common predictive models and trained them based on the filtered differential gene expression dataset. After comprehensive evaluation, we ultimately selected three algorithms-Lasso regression, random forest, and support vector machine (SVM)-as our core predictive models. To more precisely pinpoint genes closely related to disease characteristics, we utilized the aforementioned three machine learning methods for prediction and took the intersection of these prediction results, yielding a more robust list of genes associated with disease features. Following this, we conducted in-depth analysis of these key genes in the training set and validated the results independently using the GSE19429 dataset. Furthermore, we performed differential analysis of gene groups, co-expression analysis, and enrichment analysis to delve deeper into the mechanisms underlying the roles of these genes in disease initiation and progression. Through these analyses, we aim to provide new insights and foundations for disease diagnosis and treatment. Figure illustrates the data preprocessing and analysis workflow of this study.

RESULTS

Our analysis of differentially expressed genes (DEGs) in CD34+ hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) revealed significant differences in gene expression patterns compared to the control group (individuals without MDS). Specifically, the expression levels of two key genes, IRF4 and ELANE, were notably downregulated in CD34+ HSCs of MDS patients, indicating their downregulatory roles in the pathological process of MDS.

CONCLUSION

This study sheds light on the potential molecular mechanisms underlying MDS, with a particular focus on the pivotal roles of IRF4 and ELANE as key pathogenic genes. Our findings provide a novel perspective for understanding the complexity of MDS and exploring therapeutic strategies. They may also guide the development of precise and effective treatments, such as targeted interventions directed against these genes.

摘要

目的

本研究旨在通过生物信息学分析,调查和分析骨髓增生异常综合征(MDS)患者CD34 +造血干细胞(HSC)中的差异表达基因(DEG),最终目标是揭示MDS发病机制的潜在分子机制。本研究结果有望为MDS的临床治疗策略提供新的见解。

方法

最初,我们从公共基因表达综合数据库(GEO)下载了三个数据集GSE81173、GSE4619和GSE58831作为我们的训练集,并选择GSE19429数据集作为验证集。为确保数据的一致性和可比性,我们使用ComBat算法对训练集进行标准化并消除批次效应,从而将它们整合到一个统一的基因表达数据集中。随后,我们进行差异表达分析,以识别不同疾病状态下表达水平有显著变化的基因。为提高预测准确性,我们纳入了六种常见的预测模型,并基于过滤后的差异基因表达数据集对它们进行训练。经过综合评估,我们最终选择了三种算法——套索回归、随机森林和支持向量机(SVM)——作为我们的核心预测模型。为了更精确地确定与疾病特征密切相关的基因,我们利用上述三种机器学习方法进行预测,并取这些预测结果的交集,得到一份与疾病特征相关的更可靠的基因列表。在此之后,我们在训练集中对这些关键基因进行了深入分析,并使用GSE19429数据集独立验证了结果。此外,我们进行了基因组差异分析、共表达分析和富集分析,以更深入地探究这些基因在疾病发生和发展中的作用机制。通过这些分析,我们旨在为疾病诊断和治疗提供新的见解和基础。图展示了本研究的数据预处理和分析工作流程。

结果

我们对骨髓增生异常综合征(MDS)患者CD34 +造血干细胞(HSC)中的差异表达基因(DEG)分析显示,与对照组(无MDS的个体)相比,基因表达模式存在显著差异。具体而言,两个关键基因IRF – 4和ELANE的表达水平在MDS患者的CD34 + HSC中显著下调,表明它们在MDS病理过程中起下调作用。

结论

本研究揭示了MDS潜在的分子机制,特别关注IRF4和ELANE作为关键致病基因的关键作用。我们的发现为理解MDS的复杂性和探索治疗策略提供了新的视角。它们还可能指导精准有效治疗的开发,例如针对这些基因的靶向干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba68/11902259/40bfa775a8ad/pone.0315408.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验