Suppr超能文献

用于评估结直肠癌患者手术干预后愈合情况的核磁共振波谱和傅里叶变换红外光谱方法:一项初步研究。

Spectroscopic Nuclear Magnetic Resonance and Fourier Transform-Infrared Approach Used for the Evaluation of Healing After Surgical Interventions for Patients with Colorectal Cancer: A Pilot Study.

作者信息

Șaitiș Lavinia Raluca, Andras David, Pop Ioana-Alina, Șaitiș Cătălin, Crainic Ramona, Fechete Radu

机构信息

Doctoral School, Faculty of Physics, Babeş-Bolyai University, 1 Kogălniceanu, 400084 Cluj-Napoca, Romania.

Faculty of Material and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Bulevard, 400641 Cluj-Napoca, Romania.

出版信息

Cancers (Basel). 2025 Mar 5;17(5):887. doi: 10.3390/cancers17050887.

Abstract

Colorectal cancer (CRC) is one of the most common and deadly types of cancer. Compared with the classical histopathological approach, this study discusses the application of H NMR and FT-IR techniques for the fast evaluation degree of healing of patients with CRC after surgical intervention. Native and deproteinized blood plasma collected from 10 patients with confirmed CRC and 20 healthy volunteers were analyzed using H NMR distributions and FT-IR spectra measured for samples collected before and 7 days after surgery. The average FT-IR spectrum from 20 healthy volunteers is also presented. Principal component analysis (PCA) was performed on the FT-IR spectra. The results were used for further statistical analysis using receiver operating characteristic (ROC) and area under the curve (AUC) and to produce a series of prediction maps using a machine learning library. Both experimental methods combined with analysis methods demonstrated that the native blood plasma samples can be better used to predict the CRC patients' evolution 7 days after surgery. Three patients showed a significant evolution by H NMR distribution, correlated to the observation of FT-IR-PCA analysis. Maps of medical state probability were generated using a trained machine learning-based ANN. The experimental measurements combined with an advanced statistical analysis and machine learning were successfully used and show that the healing process of patients with CRC is not linear, from the preoperative state to the state associated with healthy volunteers, but passes through a distinct healing state.

摘要

结直肠癌(CRC)是最常见且致命的癌症类型之一。与传统组织病理学方法相比,本研究探讨了氢核磁共振(H NMR)和傅里叶变换红外光谱(FT-IR)技术在快速评估CRC患者手术干预后愈合程度方面的应用。使用H NMR分布以及对手术前和术后7天采集的样本测量的FT-IR光谱,对从10例确诊CRC患者和20名健康志愿者采集的天然和脱蛋白血浆进行了分析。还展示了20名健康志愿者的平均FT-IR光谱。对FT-IR光谱进行了主成分分析(PCA)。结果用于使用受试者工作特征(ROC)和曲线下面积(AUC)进行进一步的统计分析,并使用机器学习库生成一系列预测图。两种实验方法与分析方法相结合表明,天然血浆样本可更好地用于预测CRC患者术后7天的病情进展。3例患者通过H NMR分布显示出显著进展,这与FT-IR-PCA分析的观察结果相关。使用经过训练的基于机器学习的人工神经网络(ANN)生成了医疗状态概率图。实验测量与先进的统计分析和机器学习相结合得到了成功应用,结果表明CRC患者的愈合过程并非从术前状态到与健康志愿者相关状态的线性过程,而是经历了一个独特的愈合状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aadd/11899188/61fa5e7cd86e/cancers-17-00887-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验