Mayer Rulon, Yuan Yuan, Udupa Jayaram, Turkbey Baris, Choyke Peter, Han Dong, Lin Haibo, Simone Charles B
Oncoscore, Garrett Park, MD 20896, USA.
School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW 2050, Australia.
Diagnostics (Basel). 2025 Mar 5;15(5):625. doi: 10.3390/diagnostics15050625.
Prostate cancer management optimally requires non-invasive, objective, quantitative, accurate evaluation of prostate tumors. The current research applies visual inspection and quantitative approaches, such as artificial intelligence (AI) based on deep learning (DL), to evaluate MRI. Recently, a different spectral/statistical approach has been used to successfully evaluate spatially registered biparametric MRIs for prostate cancer. This study aimed to further assess and improve the spectral/statistical approach through benchmarking and combination with AI. A zonal-aware self-supervised mesh network (Z-SSMNet) was applied to the same 42-patient cohort from previous spectral/statistical studies. Using the probability of clinical significance of prostate cancer (PCsPCa) and a detection map, the affiliated tumor volume, eccentricity was computed for each patient. Linear and logistic regression were applied to the International Society of Urological Pathology (ISUP) grade and PCsPCa, respectively. The R, -value, and area under the curve (AUROC) from the Z-SSMNet output were computed. The Z-SSMNet output was combined with the spectral/statistical output for multiple-variate regression. The R (-value)-AUROC [95% confidence interval] from the Z-SSMNet algorithm relating ISUP to PCsPCa is 0.298 (0.06), 0.50 [0.08-1.0]; relating it to the average blob volume, it is 0.51 (0.0005), 0.37 [0.0-0.91]; relating it to total tumor volume, it is 0.36 (0.02), 0.50 [0.0-1.0]. The R (-value)-AUROC computations showed a much poorer correlation for eccentricity derived from the Z-SSMNet detection map. Overall, DL/AI showed poorer performance relative to the spectral/statistical approaches from previous studies. Multi-variable regression fitted AI average blob size and SCR results at a level of R = 0.70 (0.000003), significantly higher than the results for the univariate regression fits for AI and spectral/statistical approaches alone. The spectral/statistical approaches performed well relative to Z-SSMNet. Combining Z-SSMNet with spectral/statistical approaches significantly enhanced tumor grade prediction, possibly providing an alternative to current prostate tumor assessment.
前列腺癌的最佳管理需要对前列腺肿瘤进行非侵入性、客观、定量、准确的评估。当前的研究应用了视觉检查和定量方法,如基于深度学习(DL)的人工智能(AI),来评估磁共振成像(MRI)。最近,一种不同的光谱/统计方法已被用于成功评估前列腺癌的空间配准双参数MRI。本研究旨在通过基准测试以及与AI相结合来进一步评估和改进光谱/统计方法。将区域感知自监督网格网络(Z-SSMNet)应用于先前光谱/统计研究中的同一42例患者队列。使用前列腺癌临床意义概率(PCsPCa)和检测图,计算每位患者的附属肿瘤体积、偏心率。分别将线性回归和逻辑回归应用于国际泌尿病理学会(ISUP)分级和PCsPCa。计算Z-SSMNet输出的R值和曲线下面积(AUROC)。将Z-SSMNet输出与光谱/统计输出相结合进行多变量回归。Z-SSMNet算法中,将ISUP与PCsPCa相关的R(-值)-AUROC[95%置信区间]为0.298(0.06),0.50[0.08 - 1.0];将其与平均斑点体积相关时,为0.51(0.0005),0.37[0.0 - 0.91];将其与总肿瘤体积相关时,为0.36(0.02),0.50[0.0 - 1.0]。R(-值)-AUROC计算表明,从Z-SSMNet检测图得出的偏心率相关性要差得多。总体而言,相对于先前研究中的光谱/统计方法,深度学习/人工智能表现较差。多变量回归拟合人工智能平均斑点大小和SCR结果的R值为0.70(0.000003),显著高于单独对人工智能和光谱/统计方法进行单变量回归拟合的结果。相对于Z-SSMNet,光谱/统计方法表现良好。将Z-SSMNet与光谱/统计方法相结合显著增强了肿瘤分级预测,可能为当前前列腺肿瘤评估提供一种替代方法。