Suppr超能文献

基于解耦检测系统和双损失视觉Transformer的猪脸开放集识别与配准

Pig Face Open Set Recognition and Registration Using a Decoupled Detection System and Dual-Loss Vision Transformer.

作者信息

Ma Ruihan, Ali Hassan, Waqar Malik Muhammad, Kim Sang Cheol, Kim Hyongsuk

机构信息

Division of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.

Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju 54896, Republic of Korea.

出版信息

Animals (Basel). 2025 Feb 27;15(5):691. doi: 10.3390/ani15050691.

Abstract

Effective pig farming relies on precise and adaptable animal identification methods, particularly in dynamic environments where new pigs are regularly added to the herd. However, pig face recognition is challenging due to high individual similarity, lighting variations, and occlusions. These factors hinder accurate identification and monitoring. To address these issues under Open-Set conditions, we propose a three-phase Pig Face Open-Set Recognition (PFOSR) system. In the Training Phase, we adopt a decoupled design, first training a YOLOv8-based pig face detection model on a small labeled dataset to automatically locate pig faces in raw images. We then refine a Vision Transformer (ViT) recognition model via a dual-loss strategy-combining Sub-center ArcFace and Center Loss-to enhance both inter-class separation and intra-class compactness. Next, in the Known Pig Registration Phase, we utilize the trained detection and recognition modules to extract representative embeddings from 56 identified pigs, storing these feature vectors in a Pig Face Feature Gallery. Finally, in the Unknown and Known Pig Recognition and Registration Phase, newly acquired pig images are processed through the same detection-recognition pipeline, and the resulting embeddings are compared against the gallery via cosine similarity. If the system classifies a pig as unknown, it dynamically assigns a new ID and updates the gallery without disrupting existing entries. Our system demonstrates strong Open-Set recognition, achieving an AUROC of 0.922, OSCR of 0.90, and F1-Open of 0.94. In the closed set, it attains a precision@1 of 0.97, NMI of 0.92, and mean average precision@R of 0.96. These results validate our approach as a scalable, efficient solution for managing dynamic farm environments with high recognition accuracy, even under challenging conditions.

摘要

高效的养猪业依赖于精确且适应性强的动物识别方法,尤其是在新猪不断加入猪群的动态环境中。然而,由于个体相似度高、光照变化和遮挡等因素,猪脸识别具有挑战性。这些因素阻碍了准确的识别和监测。为了在开放集条件下解决这些问题,我们提出了一种三阶段猪脸开放集识别(PFOSR)系统。在训练阶段,我们采用解耦设计,首先在一个小的标注数据集上训练基于YOLOv8的猪脸检测模型,以自动定位原始图像中的猪脸。然后,我们通过一种双损失策略——结合子中心弧脸损失和中心损失——来优化视觉Transformer(ViT)识别模型,以增强类间分离和类内紧凑性。接下来,在已知猪注册阶段,我们利用训练好的检测和识别模块从56头已识别的猪中提取代表性嵌入,将这些特征向量存储在猪脸特征库中。最后,在未知和已知猪识别与注册阶段,新获取的猪图像通过相同的检测-识别管道进行处理,得到的嵌入通过余弦相似度与特征库进行比较。如果系统将一头猪分类为未知,它会动态分配一个新ID并更新特征库,而不会干扰现有条目。我们的系统展示了强大的开放集识别能力,AUROC达到0.922,OSCR为0.90,F1-Open为0.94。在封闭集中,它的precision@1为0.97,NMI为0.92,mean average precision@R为0.96。这些结果验证了我们的方法是一种可扩展、高效的解决方案,即使在具有挑战性的条件下,也能以高识别准确率管理动态养殖环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2421/11898941/108348617b95/animals-15-00691-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验