Suppr超能文献

基于LiNH的GaN:ZnO固溶体的氮化合成与结构分析

LiNH-Based Nitridation Synthesis and Structure Analysis of GaN:ZnO Solid Solutions.

作者信息

Khairat Ummul, Manseki Kazuhiro, Ogawa Akito, Sugiura Takashi

机构信息

Graduate School of Natural Science and Technology, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.

出版信息

Molecules. 2025 Mar 1;30(5):1134. doi: 10.3390/molecules30051134.

Abstract

The GaN:ZnO solid solution is a visible-light-absorbing material widely developed for photocatalytic applications. For the first time, we demonstrate that a molecular source of LiNH significantly enhances the synthesis of GaN:ZnO solid solutions by leveraging its high reactivity in molten lithium chloride. Most notably, LiNH dramatically accelerates the nitridation reaction of gallium chloride (GaCl) and zinc chloride (ZnCl) or zinc oxide (ZnO), enabling the rapid formation of GaN:ZnO within just 2 h at a relatively low temperature of 650 °C. This marks a significant improvement over conventional ammonia gas synthesis methods, which typically require more than 10 hours. Furthermore, this approach eliminates the need for toxic ammonia gas and metal nitrate oxidizers, providing a safer and more environmentally sustainable pathway for material synthesis. Comprehensive structural and elemental analyses, including XRD, TEM, and XRF, confirmed the formation of highly crystalline GaN:ZnO solid solutions, revealing varying levels of reaction uniformity at the atomic scale under different zinc sources and Zn/Ga ratio conditions. The light absorption edges of the materials ranged from 500 nm to 650 nm, depending on the zinc content and source. These findings establish a novel and efficient synthesis strategy for GaN:ZnO solid solutions, paving the way for their development in visible-light-driven applications.

摘要

氮化镓

氧化锌固溶体是一种广泛应用于光催化领域的可见光吸收材料。我们首次证明,LiNH分子源通过利用其在熔融氯化锂中的高反应活性,显著提高了氮化镓:氧化锌固溶体的合成效率。最值得注意的是,LiNH极大地加速了氯化镓(GaCl)与氯化锌(ZnCl)或氧化锌(ZnO)的氮化反应,使得在650°C的相对低温下仅需2小时就能快速形成氮化镓:氧化锌。这相对于传统的氨气合成方法有了显著改进,传统方法通常需要超过10小时。此外,这种方法无需使用有毒的氨气和金属硝酸盐氧化剂,为材料合成提供了一条更安全、更环保可持续的途径。包括XRD、TEM和XRF在内的全面结构和元素分析证实了高结晶度氮化镓:氧化锌固溶体的形成,揭示了在不同锌源和Zn/Ga比条件下原子尺度上不同程度的反应均匀性。材料的光吸收边缘在500纳米至650纳米之间,具体取决于锌含量和锌源。这些发现为氮化镓:氧化锌固溶体建立了一种新颖且高效的合成策略,为其在可见光驱动应用中的发展铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/11901885/63ce4443145f/molecules-30-01134-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验