Santacreu-Vilaseca Marta, Moreno-Magallon Judith, Juanes-Casado Alba, Gil-Sánchez Anna, González-Mingot Cristina, Torres Pascual, Brieva Luis
Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, 25198 Lleida, Spain.
Neuroimmunology Group, Department of Medicine, University of Lleida-IRBLleida, 25198 Lleida, Spain.
Int J Mol Sci. 2025 Feb 28;26(5):2179. doi: 10.3390/ijms26052179.
Multiple sclerosis (MS) is characterized by demyelination and neuroinflammation, with oxidative stress playing a pivotal role in lesion pathology. This study aimed to investigate the differential cellular responses to myelin debris under varying oxidative states. Myelin oxidation was induced using a Cu-peroxide system, confirmed by elevated TBARS levels and autofluorescence. BV-2 microglia viability remained unaffected by myelin exposure. However, oxidized myelin significantly altered oxidative stress markers, autophagy, and iron metabolism, as evidenced by changes in Sod2, Tfr1, p62, and P-Erk/Erk ratios. Morphological analyses revealed time- and dose-dependent differences in myelin processing, with oxidized myelin leading to distinct phagosome dynamics. Complementary studies using induced microglia-like cells (iMG)-a primary cell culture-confirmed the feasibility of employing oxidized microglia to study microglia activity. The use of iMGs provides a model closer to patient physiology, offering the potential to evaluate individual cellular responses to oxidative damage. This approach could be instrumental in identifying personalized therapeutic strategies by assessing patient-specific microglial behavior in response to myelin debris. These findings highlight the impact of myelin oxidative status on microglial function, advancing the understanding of oxidative stress in MS and paving the way for personalized medicine applications in neuroinflammation.
多发性硬化症(MS)的特征是脱髓鞘和神经炎症,氧化应激在病变病理中起关键作用。本研究旨在探讨在不同氧化状态下细胞对髓磷脂碎片的不同反应。使用铜过氧化物系统诱导髓磷脂氧化,通过升高的硫代巴比妥酸反应物(TBARS)水平和自发荧光得以证实。BV-2小胶质细胞活力不受髓磷脂暴露的影响。然而,氧化的髓磷脂显著改变了氧化应激标志物、自噬和铁代谢,超氧化物歧化酶2(Sod2)、转铁蛋白受体1(Tfr1)、p62和磷酸化细胞外信号调节激酶/细胞外信号调节激酶(P-Erk/Erk)比值的变化证明了这一点。形态学分析揭示了髓磷脂处理过程中存在时间和剂量依赖性差异,氧化的髓磷脂导致不同的吞噬体动力学。使用诱导性小胶质细胞样细胞(iMG)(一种原代细胞培养物)进行的补充研究证实了采用氧化小胶质细胞来研究小胶质细胞活性的可行性。iMG的使用提供了一个更接近患者生理状态的模型,具有评估个体细胞对氧化损伤反应的潜力。这种方法通过评估患者特异性小胶质细胞对髓磷脂碎片的反应行为,有助于确定个性化治疗策略。这些发现突出了髓磷脂氧化状态对小胶质细胞功能的影响,加深了对MS中氧化应激的理解,并为神经炎症的个性化医学应用铺平了道路。